Skip to main content
U.S. flag

An official website of the United States government

Here’s how you know

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

HTTPS

Secure .gov websites use HTTPS
A lock (LockA locked padlock) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

ENERGY STAR
Utility Navigation
  • About
  • For Partners
Main navigation
  • Find Products
    • Product Finder
    • Rebate Finder
    • Ask the Experts
    • Product Specification Search
    • Best Value Finder
    • Frequently Asked Questions
  • Save at Home
    • Heat & Cool Efficiently
    • Seal and Insulate
    • Expert Home Improvements
  • New Homes
    • Find a Builder
    • Homeowner Benefits
    • Join as a Partner
    • Program Requirements
    • Residential Resources
    • § 45L Builder Tax Credit
    • ENERGY STAR NextGen
    • About Us
  • Commercial Buildings
    • Benchmark
    • Save Energy
    • Earn Recognition
    • Resources by Audience
    • Resources by Topic
    • Training
    • About Us
  • Industrial Plants
    • Industrial Partnership
    • Industrial Assistance Network
    • Plant Certification
    • Challenge for Industry
    • Industries in Focus
    • Treasure Hunt
    • Get started with ENERGY STAR
    • Program Administrators
    • Service & Product Providers
    • Decarbonizing Industry
Breadcrumb
  1. Home
  2. Energy Efficient Products
  3. Solar Water Heaters
  4. How It Works — Solar Water Heaters

How It Works — Solar Water Heaters

Solar water heaters come in a wide variety of designs, all including a collector and storage tank, and all using the sun's thermal energy to heat water.

Solar water heaters are typically described according to the type of collector and the circulation system.

Collector Types
image of a Solar Batch Collector
Batch collectors, also called Integrated Collector-Storage (ICS) systems, heat water in dark tanks or tubes within an insulated box, storing water until drawn. Water can remain in the collector for long periods of time if household demand is low, making it very hot. A tempering valve is your protection from scalding at the tap. The tempering valve mixes in cold water to decrease the water's temperature before it's delivered to the tap. Batch collectors are incompatible with closed-loop circulation systems. Thus, they are generally not recommended for cold climates.
Image of Solar Flat-plate Collector
Flat-plate collectors typically consist of copper tubes fitted to flat absorber plates. The most common configuration is a series of parallel tubes connected at each end by two pipes, the inlet and outlet manifolds. The flat plate assembly is contained within an insulated box, and covered with tempered glass.

Flat plate collectors are typically sized to contain 40 gallons of water. Two collectors provide roughly half of the hot water needed to serve a family of four.
Image of a Solar evacuated tube collector
Evacuated tube collectors are the most efficient collectors available. Each evacuated tube is similar to a thermos in principle. A glass or metal tube containing the water or heat transfer fluid is surrounded by a larger glass tube. The space between them is a vacuum, so very little heat is lost from the fluid.

These collectors can even work well in overcast conditions and operate in temperatures as low as -40°F. Individual tubes are replaced as needed. Evacuated tube collectors can cost twice as much per square foot as flat plate collectors.

Closed-loop, or indirect, systems use a non-freezing liquid to transfer heat from the sun to water in a storage tank. The sun's thermal energy heats the fluid in the solar collectors. Then, this fluid passes through a heat exchanger in the storage tank, transferring the heat to the water. The non-freezing fluid then cycles back to the collectors. These systems make sense in freezing climates.

Circulation Systems
Direct systems circulate water through solar collectors where it is heated by the sun. The heated water is then stored in a tank, sent to a tankless water heater, or used directly. These systems are preferable in climates where it rarely freezes. Freeze protection is necessary in cold climates.
Closed-loop, or indirect, systems use a non-freezing liquid to transfer heat from the sun to water in a storage tank. The sun's thermal energy heats the fluid in the solar collectors. Then, this fluid passes through a heat exchanger in the storage tank, transferring the heat to the water. The non-freezing fluid then cycles back to the collectors. These systems make sense in freezing climates.
Active, or forced-circulation, systems use electric pumps, valves and controllers to move water from the collectors to the storage tank. These are common in the U.S.
Passive systems require no pumps. Natural convection moves water from the collectors to the storage tank as it heats up.
ENERGY STAR
United States Environmental Protection Agency

Save Energy.

  • Find Products
  • Save at Home
  • New Homes
  • Commercial Buildings
  • Industrial Plants
  • Partner Resources

Learn More.

  • About Us
  • Join
  • Newsroom
  • Privacy
  • Accessibility Statement
  • Help Desk

Stay Informed.

  • Public Notices
  • Consumer Newsletter
  • Program Updates
Back to top