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DEVELOPMENT OF ENERGY STAR® ENERGY 
PERFORMANCE INDICATOR FOR 
COMMERCIAL BREAD AND ROLL BAKERIES 
GALE A. BOYD, MATT DOOLIN, AND RAGHAV SABOO 

ABSTRACT 
  

 Organizations that implement strategic energy management programs undertake a set of 
activities that, if carried out properly, have the potential to deliver sustained energy savings.  Energy 
performance benchmarking is a key activity of strategic energy management and one way to enable 
companies to set energy efficiency targets for manufacturing facilities.  The opportunity to assess plant 
energy performance through a comparison with similar plants in its industry is a highly desirable and 
strategic method of benchmarking for industrial energy managers.  However, access to energy 
performance data for conducting industry benchmarking is usually unavailable to most industrial energy 
managers.  The U.S. Environmental Protection Agency (EPA), through its ENERGY STAR program, seeks to 
overcome this barrier through the development of manufacturing sector-based plant energy performance 
indicators (EPIs) that encourage U.S. industries to use energy more efficiently.  This report describes work 
with the Commercial Baking industry to provide a plant-level indicator of energy efficiency for facilities 
that produce various types of bread, rolls, and related products in the United States.  Consideration is 
given to the role that performance-based indicators play in motivating change; the steps necessary for 
indicator development, from interacting with an industry in securing adequate data for the indicator; and 
actual application and use of an indicator when complete.  How indicators are employed in EPA’s efforts 
to encourage industries to voluntarily improve their use of energy is discussed as well.  The report 
describes the data and statistical methods used to construct the EPI for plants within the industry, 
specifically large commercial bakeries producing bread, rolls, frozen dough and related products.  The 
individual equations are presented, as are the instructions for using those equations as implemented in 
an associated Microsoft Excel-based spreadsheet tool.  
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1 INTRODUCTION 
  

 ENERGY STAR was introduced by EPA in 1992 as a voluntary, market-based partnership to reduce 
air pollution and greenhouse gas emissions associated with energy use through increased energy 
efficiency (U.S. Environmental Protection Agency 2015).  This government program enables industrial and 
commercial businesses as well as consumers to make informed decisions that save energy, reduce costs, 
and protect the environment.  For businesses, a key step in improving energy efficiency is to 
institutionalize a strategic approach to energy management.  Drawing from management standards for 
quality and environmental performance, EPA developed the ENERGY STAR Guidelines for Energy 
Management that identifies the components of successful energy management practices (U.S. 
Environmental Protection Agency 2003).   

These include: 

• Commitment from a senior corporate executive to manage energy across all 
businesses and facilities operated by the company; 

• Appointment of a corporate energy director to coordinate and direct the energy 
program and multi-disciplinary energy team; 

• Establishment and promotion of an energy policy; 

• Development of a system for assessing performance of the energy management 
efforts, including tracking energy use as well as benchmarking energy in facilities, 
operations, and subunits therein; 

• Conduct of assessments to determine areas for improvement; 

• Setting of goals at the corporate, facility, and subunit levels; 

• Establishment of an action plan across all operations and facilities, as well as 
monitoring successful implementation and promoting the value to all employees; and 

• Pursue recognition and rewards for the success of the program. 

 Of the major steps in energy management program development, benchmarking energy 
performance by comparing current energy performance to a baseline or a similar entity is critical.  In 
manufacturing, it may take the form of detailed comparisons of specific production lines or pieces of 
equipment, or it may be performed at a broader system level by gauging the performance of a single 
manufacturing plant with respect to its industry.  Regardless of the application, benchmarking enables 
companies to determine whether better energy performance could be expected.  It empowers them to 
set goals and evaluate their reasonableness. 

 Boyd, Dutrow, and Tunnessen (2008) describe the evolution of a statistically based plant energy 
performance indicator for the purpose of benchmarking manufacturing energy use for ENERGY STAR.  
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Boyd and Lee (2016) describe the basic approach used in developing such an indicator, including the 
concept of normalization and how variables are chosen to be included in the analysis.  To date, ENERGY 
STAR has developed statistical indicators for a wide range of industries (U.S. Environmental Protection 
Agency 2015). This report describes the basic concept of benchmarking and the statistical approach 
employed in developing performance-based energy indicators for the commercial baking industry, the 
evolution of the analysis done for this industry, the final results of this analysis, and ongoing efforts by 
EPA to improve the energy efficiency of this industry and others. 

2 BENCHMARKING THE ENERGY EFFICIENCY OF INDUSTRIAL PLANTS 
  

 Among U.S. manufacturers, few industries participate in industry-wide plant benchmarking.  The 
petroleum and petrochemical industries each support plant-wide surveys conducted by a private 
company and are provided with benchmarks that address energy use and other operational parameters 
related to their facilities. Otherwise, most industries have not benchmarked energy use across their 
plants.  As a result, some energy managers find it difficult to determine how well their plants might 
perform. 

 In 2000, EPA began developing a method for developing benchmarks of energy performance for 
plant-level energy use within a manufacturing industry.  Discussions yielded a plan to use a source of data 
that would nationally represent manufacturing plants within a particular industry, create a statistical 
model of energy performance for the industry’s plants based on these data along with other available 
sources for the industry, and establish the benchmark for the comparison of those best practices, or best-
performing plants, to the industry.  The primary data sources would be the Census of Manufacturing, 
Annual Survey of Manufacturing, and Manufacturing Energy Consumption Survey collected by the Census 
Bureau, or data provided by trade associations and individual companies when warranted by the specific 
industry circumstances and participation.  

3 EVOLUTION OF THE COMMERICAL BAKING EPI 
 

In early 2012, EPA decided to expand its existing work with food processors by starting an 
industrial focus in commercial bakeries.  This was done with early involvement and interest from the 
industry trade association, the American Bakers Association.  Shortly after, EPA produced an energy 
guide entitled Energy Efficiency Improvement and Cost Saving Opportunities for the Baking Industry, 
which highlighted cost saving energy efficiency opportunities throughout bakeries at the process level.   

3.1 Using Census Data 
 

The first draft of the Commercial Bread and Roll Bakery EPI (hereafter, referred to as the 
commercial baking EPI for brevity) was based on data reported to the U.S. Census Bureau under the six-
digit NAICS code 311812, specifically covering the inputs and outputs of bread and bread-type rolls.  
After the initial analysis, the following variables were included in the model to account for energy usage: 

• Flour (Input/Capacity) 
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• Production worker hours (Utilization) 
• Total value of production (Production) 
• White hearth bread value (Product mix) 
• Dark wheat bread value (Product mix) 
• Other breads value (Product mix) 
• Rolls, hamburger, and hot dog buns value (Product mix) 
• Other rolls value (Product mix) 
• Other production value (Product mix) 

Early results indicated that other production was the largest product mix contributor to energy 
use, hinting that the Census data could be missing key information or capturing more facilities that 
would fall outside the scope of traditional commercial bakeries.  The effects of other variables were of 
the expected direction and magnitude.  For example, total value of production showed a positive, 
significant impact on energy, indicating that more expensive products would use more energy through 
some combination of increased baking times, longer mixing times, or some other process-related 
component. 

Industry participants were critical of the Census data-based model for a variety of reasons. 
Production data was based on sales rather than physical quantity values.  Sales data could be impacted 
by different product markups by brand.  In addition, data on the amount or sales of frozen products 
were not included.  Frozen products have different baking times and require large freezers, both of 
which would impact the energy usage of a plant that was not accounted for in the Census-based model.  
Therefore, industry participants suggested that they could voluntarily provide data for a new analysis, 
with support from the industry trade association. 

3.2 Using Industry-Supplied Data 
  

To move forward with industry-supplied data, discussions centered on what variables are 
suspected to contribute the most to energy use and what data all facilities are currently tracking.  The 
focus participants indicated that most plants track pounds of raw dough and baked weight of final 
products; the raw dough values would be greater than the sum of all final baked product weights.  
Whole wheat breads were not suspected to use any more energy in production than white breads, so no 
distinction was made between these two types. Major product types included hearth breads, pan 
breads, rolls, English muffins, bagels, frozen dough, and other products. Information on the weight of 
scrapped product was also collected, but found to be very insignificant in number and data accuracy was 
questionable.  Instead, the ratios between raw dough and final baked product weights capture wasted 
product as the amount of dough needed to make a certain amount/type of bread is fairly standard 
across the industry.  More product types and industry-supplied data helped ensure that data used in the 
analysis would be within the commercial bakery scope, focusing on breads and excluding pastries, pies, 
cakes, etc.  Data on amounts of frozen products, the presence of freezers in the facility, and whether the 
production area was conditioned were collected to pinpoint operational differences between facilities 
that could result in different energy profiles for plants with similar product totals.  Finally, electricity and 
fuel data were supplied directly from facilities and different types of fuels were identified to make the 
appropriate source energy conversions.  All data provided for EPI research & development were covered 
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under company-specific non-disclosure agreements with Duke University.  No data were supplied to 
EPA. 

 The earliest model using industry-supplied data consisted of 317 plant-years of data from 2010-
2012, covering 135 unique facilities across 17 companies.  Commercial bakeries primarily use electricity 
for mixing, machining, freezing, and air conditioning, and use fuels for baking and heating.  These 
distinct energy sources for these processes allowed electricity and fuels to be split, and the efficiency of 
each energy source was evaluated in the model before being aggregated into one overall efficiency 
score (discussed in greater detail in the following section).  Weather variables, including heating degree 
days (HDD) and cooling degree days (CDD), were added to account for the effect different climates 
would have on electricity and fuel consumption via heating/cooling requirements.  Additionally, weather 
conditions affect chiller efficiencies and oven efficiency due to the amount of outside air used.  Early 
results were in line with expectations and are detailed below: 

• Plant Size 
o There is evidence of economies of scale in electricity and fuel use, meaning that a plant 

producing twice as much product would not use twice as much energy.  Amounts of raw 
dough processed were used as a proxy for plant capacity. 

• Electricity 
o The percentage of frozen products played a large role in energy consumption, capturing 

the effects of operating freezers and freezer capacities. 
o Air conditioning the facility did not have a significant impact on energy usage. 
o There were small differences in electricity usage per product, with pan breads and 

bagels using the least and hearth bread and English muffins using the most. 
o Cooling degree days (CDD) have a small but significant impact. 
o Electricity intensity (electricity per lb. of raw dough) varies more widely than fuel 

intensity, but this is due to different product requirements rather than inefficiencies. 
• Fuels 

o Frozen dough was the least fuel intensive, as there is no baking involved.  Other frozen 
products have lower fuel use, but not to the same extent, implying partial baking 
occurred. 

o Hearth breads and English muffins use the most fuels, with a larger difference than 
electricity. 

o Heating degree days (HDD) have a small but significant impact. 

Through industry testing and feedback, some changes were made to the model to correct some 
identified problems, including the strength of the air conditioning variable, plants that reported no lost 
weight from raw dough to final product, and how to more accurately account for products that are 
partially baked and then frozen.  The first issue dealt with the air conditioning result since it is 
counterintuitive that operating air conditioning would not have a statistical impact on electricity 
consumption.  Many facilities reported air conditioning, but they only conditioned the office and 
employee areas and not areas of production.  The definition was altered to only include if the 
manufacturing areas of the facility were air conditioned.  This change indicated that conditioning the 
production space increases expected electricity consumption by 33%, although there was a relatively 
small number of facilities that condition these areas.   
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Next, a limited number of companies did not track final baked product weight and instead used 
the amount of raw dough that went in to each product.  Reporting these raw dough product weights 
would result in a summed total matching the raw dough inputs; this would imply that all products were 
being frozen without any baking, and should be classified as frozen dough even though that is not the 
case.  Since the final baked product weight data were not being tracked at the company level, the 
average ratio of raw dough to final product for each product in the industry sample was used to 
estimate total baked weights.  The ratio was approximately equal to 0.90, indicating that 10% of raw 
dough weight was lost as evaporated moisture during the baking process.  Focus participants agreed 
that this ratio was accurate in most cases, and impacted companies did not report producing any par-
baked products that would affect this assumption.  Updating these numbers more accurately reflected 
the energy usage for each product type.   

Finally, the effect of partial baking and amount of frozen products were linked, and required 
multiple steps to resolve in the model.  Several data entry errors for frozen product percentages (e.g., a 
1.00 indicating 100% frozen product was interpreted as 1% frozen product) were corrected, which 
strengthened the effect of frozen products on energy usage and clarified the extent of partial baking.  
Additionally, many facilities that were reporting high percentages of frozen product were only producing 
products labeled as “other.”  Many of these plants were identified as producing frozen pastries, pies, 
cakes, and other sweets, and were therefore dropped from the analysis.   Following data adjustments, 
two additional variables were added that captured partial baking.  The first was a ratio of total product 
weight to processed raw dough.  If this variable was equal to one, then no baking occurred and all 
products were frozen dough.  This variable would be larger for partially baked products, as less moisture 
would be baked out due to a shorter baking time and the products would be heavier than similar fully 
baked products.  Intuitively, partial baking would require less energy, and this is confirmed by the 
negative coefficient on this variable for both the fuel and electricity models.  The second variable was 
the percentage of frozen product less the percentage that is frozen dough.  Since frozen dough is 
already being accounted for in the product mix, also including it in the frozen product variable 
overstated the effect of frozen dough and understated the impact of products that were partially baked 
and then frozen.  By capturing the percentage of partially baked products, the impact is more accurately 
captured in the model without requiring additional data collection.  Summary statistics for the final 
variables utilized in the model are detailed in Table 1 below: 

Table 1 Summary Statistics 

Variable Mean Standard Deviation 
Electricity (MWh) 7,109 4,421 

Total Fuels (MMBtu) 49,410 29,433 
Raw Dough Processed (million lbs.) 66 43 
Final Baked Weight to Raw Dough 86% 5% 

Hearth Breads (million lbs.) 1.2 6.5 
Pan Breads (million lbs.) 30 28 

Rolls (million lbs.) 17 17 
English Muffins (million lbs.) 2.4 8.7 

Bagels (million lbs.) 1.2 5.4 
Frozen Dough (million lbs.) 3.3 25 
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Other Products (million lbs.) 1.4 4.9 
Percentage of Frozen Product 6% 20% 

 

3.3 Modeling electricity and fuel use separately  
 

There are instances in which modeling total energy use is the most appropriate approach, 
particularly when there are substantial opportunities to meet production energy requirements by using 
fuels instead of electricity, or when there is onsite electricity generation from combined heat and power 
(CHP) where typically more fuel is used and less electricity purchased.  This would result in a plant 
appearing very fuel inefficient and very electric efficient; examples of the converse are possible.  
However, when certain products are inherently more (or less) electric or fuel intensive, then it may be 
appropriate to represent the electricity and fuel use separately since those production differences can 
more readily be accounted for in the analysis.  Separating the energy forms may also improve the ability 
to measure weather effects, since higher cooling degree days (CDD) will be associated with higher 
cooling loads and electricity use; conversely, heating degree days (HDD) will be associated with heating 
loads and fuel use.1 

The value of separately modeling electricity and fuel was quite high in the large commercial 
bakery sector:  since some products are frozen, the process would be more electric intensive.  There is 
also a sub-category of frozen products that are not baked, so would be both more electric intensive and 
less fuel intensive.  To capture these product mix effects, a separate analysis of the two energy forms 
was needed.  In addition, there are few, if any, applications of CHP in this industry, so this particular 
reason to model total energy is not a concern.  Industry-provided data allowed for separate electric and 
thermal analyses in the third version of the draft model. 

The analysis of each energy form follows the same general approach as would be taken for a 
total energy analysis, resulting in an individual measure of energy efficiency performance.  Since the 
percentile rankings of these individual measures of efficiency are based on a probability distribution, 
each with its own variance, the Energy Performance Score (EPS) of the total energy use would also be 
derived from these separate variances.  If electric efficiency was independent of (unrelated to) fuel 
efficiency, then the relevant variance for the sum of electricity use and fuel use would be the sum of the 
underlying variances, but this is unlikely to be the case.  The energy management of the firm (plant) 
might make a particular location more (or less) efficient in both cases, making the efficiencies 
correlated.  Either the joint distribution would need to be explicitly modeled, or another way to obtain 
the efficiency distribution for total energy would be necessary.  In the case of the commercial baking 
EPI, the latter was chosen. 

The general form of the underlying EPI equation is 

𝐸𝐸 = 𝑓𝑓(𝑌𝑌, 𝑋𝑋;  𝜃𝜃) + 𝜀𝜀      (1) 

or in this case  

                                                           
1 There are exceptions to this pattern, e.g., electricity used in the heating system, fuels driving adsorption chillers, 
etc.  
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ln(𝐸𝐸) = 𝑎𝑎 + ∑ 𝑏𝑏𝑗𝑗𝑛𝑛
𝑗𝑗=1 𝑙𝑙𝑙𝑙(𝑦𝑦𝑗𝑗) + ∑ 𝑐𝑐𝑗𝑗𝑚𝑚

𝑗𝑗=1 𝑥𝑥𝑗𝑗 + 𝜀𝜀   (2) 

Where Y includes measure of activities, X is plant characteristics like weather and product mix, and the 
vector of parameters to be estimated is 𝜃𝜃 = (𝑎𝑎, 𝑏𝑏∗, 𝑐𝑐∗, 𝜎𝜎2).   

We compute the estimate of efficiency as  𝜖𝜖𝑖̂𝑖,𝑡𝑡, for every plant, i, and year, t, from the parameter 
estimates, which are denoted by a  � , from 

ln(𝐸𝐸) − 𝑎𝑎� + ∑ 𝑏𝑏𝚥𝚥�𝑛𝑛
𝑗𝑗=1 ln (𝑦𝑦𝑗𝑗) + ∑ 𝑐𝑐𝚥𝚥�𝑚𝑚

𝑗𝑗=1 𝑥𝑥𝑗𝑗 = 𝜖𝜖�𝑖𝑖,𝑡𝑡   (3) 

For models using ordinary least squares (OLS) estimates, such as is the case for this industry, we 
have estimated the variance of the error term of equation (1), and we can compute the probability that 
the difference between actual energy use and predicted average energy use is no greater than this 
computed difference under the assumption that the efficiency, ε , is normally distributed with zero 
mean and variance 𝜎𝜎2, i.e., 𝜀𝜀~𝑁𝑁(0, 𝜎𝜎2) 

EPS = (1 − Pr�𝜀𝜀 ≤ 𝜖𝜖𝑖̂𝑖,𝑡𝑡�) ∙ 100      (4) 

One minus this probability, multiplied by 100, is the Energy Performance Score (EPS), and is the 
percentile ranking of the energy efficiency of the plant.2   

However, the EPI has two types of energy, so it is necessary to have 𝜖𝜖𝑖̂𝑖,𝑡𝑡,𝑒𝑒 and 𝜖𝜖𝑖̂𝑖,𝑡𝑡,𝑓𝑓 , where e and 
f represent electricity and fuels.  The sum of two normally distributed variables is not necessarily 
normal, unless they are uncorrelated.  It would be preferable to compute the analog of 𝜖𝜖𝑖̂𝑖,𝑡𝑡,𝑒𝑒 and 𝜖𝜖𝑖̂𝑖,𝑡𝑡,𝑓𝑓, 
but for the sum of electricity and fuels.  To do this, we need to account for the fact that the equations 
are estimated in log form, convert the predicted values for the energy use into levels, convert them to 
common units so they can be added together, and have a method to compute the probability in 
equation (4) that is the basis for the EPS. 

While it is true that the predicted value of the natural log of energy use, ln(𝐸𝐸)� , is 

ln(𝐸𝐸)� = 𝑎𝑎� + ∑ 𝑏𝑏𝚥𝚥�𝑛𝑛
𝑗𝑗=1 ln (𝑦𝑦𝑗𝑗) + ∑ 𝑐𝑐𝚥𝚥�𝑚𝑚

𝑗𝑗=1 𝑥𝑥𝑗𝑗     (5) 

we need the predicted level of energy use in order to add electricity and fuel together.  For an OLS, the 
estimate of the predicted level of energy use – i.e., the expected value of E – is not the exponential of 
ln(𝐸𝐸)� , but is 

𝐸𝐸� = 𝑒𝑒�ln (𝐸𝐸)� +𝜎𝜎
2

2 �       (6) 

𝜎𝜎2 is the OLS error variance estimated from (2). 

For notational simplicity, we denote 𝐸𝐸𝑖𝑖,𝑡𝑡, 𝐸𝐸𝚤𝚤,𝑡𝑡� , 𝐹𝐹𝑖𝑖,𝑡𝑡, and 𝐹𝐹𝚤𝚤,𝑡𝑡�  to be the actual and predicted pairs 
for electricity use and fuel use, respectively, for each plant and year.  We can compute the estimates of 

                                                           
2 By ENERGY STAR convention, the EPS is 100 for the lowest value of energy intensity, representing efficiency.  In 
statistics, the lowest (left-most value of the density and distribution) is zero and the largest (right-most value) is 
100%.  To create the EPS we use the simple transformation. 
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plant level total energy efficiency by adding actual electricity and fuel use and subtracting the predicted 
levels from equation (6) above. 

�𝐸𝐸𝑖𝑖,𝑡𝑡 ∙ 𝐶𝐶 + 𝐹𝐹𝑖𝑖,𝑡𝑡� − �𝐸𝐸𝚤𝚤,𝑡𝑡� ∙ 𝐶𝐶 + 𝐹𝐹𝚤𝚤,𝑡𝑡� � = 𝜖𝜖𝚤𝚤,𝑡𝑡�     (7) 

C is the unit conversion of electricity to source MMBtu, since the model estimate for electric efficiency is 
in units other than source MMBtu. 

To allow for the possibility that the distribution of 𝜖𝜖𝑖𝑖,𝑡𝑡 from equation (7) is not a simple normal 
distribution, we estimate the distribution non-parametrically via a kernel density.  Kernel density 
estimation is a flexible approach to computing the density function, similar in concept to a “smoothed 
histogram.”  The support points for the non-parametric estimate for the density of the plant level 
efficiencies, 𝜖𝜖𝑖𝑖,𝑡𝑡, are then used to compute the cumulative distribution function via numerical 
integration over the support points.  An example is shown in Figure 1 (Boyd and Lee 2016).  The kernel 
density (blue) and associated distribution (orange) of a set of actual efficiency estimates is obviously not 
a normal distribution.  The cumulative distribution can be converted to a lookup table for the percentile 
corresponding to any value of 𝜖𝜖𝑖𝑖,𝑡𝑡. 

Figure 1 Example of a Kernel Density and Associated Cumulative Distribution Estimate for Energy 
Efficiency in Metal Based Durables (source Boyd and Lee 2016) 
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4 FINAL MODEL ESTIMATES 
 

This section presents the final equations used for the EPI, based on the methods and evolution 
described above.  Stylized results that provide additional interpretation are also given. 

4.1 Statistical Estimates and Elasticities 
  

The final equations for electricity and fuels are shown in equations 8 and 9 and final results are 
shown in Table 2 below.  All product mix ratios are compared to the electricity or fuels needed for pan 
breads, as this was omitted to avoid perfect multicollinearity.  Elasticities are reported along with 
coefficients to more easily understand the impact each variable has on energy usage.  Using elasticity 
values, a 1% increase in each variable would lead to an electricity/fuels increase equal to the given 
elasticity.  For example, a 10% increase in raw dough would increase predicted electricity by 7.4% and 
fuels by 7.2%.  For the ratio variables, the same applies, but any increases are in comparison to a similar 
increase to pan breads, the omitted product type.  For example, a 10% increase in rolls would increase 
predicted electricity 0.43% more than a 10% increase in pan breads.  For the air conditioned dummy 
variable, moving from 0 (no AC) to 1 (AC) would increase predicted electricity by 33%.  The coefficient 
for amount of raw dough indicates economies of scale, as processing twice as much raw dough would 
only increase energy usage by approximately 70%, as opposed to 100% if there were not any benefits to 
larger plant sizes.  These results are consistent with industry expectations regarding energy needed for 
different product types.  Table 2 provides a summary of the variables and their impacts on electricity 
and fuel EPI models. 

ln ( 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒) =  𝛼𝛼 +  𝛽𝛽1 ln ( 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟ℎ) +  𝛽𝛽2 �
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Table 2 Model Results and Variable Impacts 

 Electricity Model Fuels Model 

Variables Coefficient 
Standard 

Error Elasticity Coefficient  
Standard 

Error Elasticity 
Log Raw Dough 0.744** 0.028 0.744 0.716** 0.0268 0.716 

Baked Weight Ratio -0.737* 0.365 -0.635 -0.485* 0.351 -0.418 
Hearth Bread Ratio 0.257* 0.107 0.009 0.493** 0.099 0.0174 
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Rolls Ratio 0.143* 0.065 0.043 - - - 
English Muffin Ratio - - - 0.172* 0.096 0.00818 

Bagel Ratios -0.090 0.090 -0.0045 0.118* 0.083 0.006 
frozdoughRatio2 0.572** 0.119 0.0190 -1.947** 0.105 -0.0648 

Annual HDD - - - 0.000069** 0.000 0.288 
Annual CDD 0.000029** 0.000 0.0478 - - - 

Air Conditioning Dummy 0.336** 0.062 0.336 - - - 
Percentage of Frozen 

Product Excluding Frozen 
Dough 0.297** 0.093 0.0191 - - - 

       
R-Squared 0.809 0.820 

** Significant at the 99% level; * Significant at the 90% level 

4.2 Stylized Results 
 

When only examining the raw data on energy intensity, we see that the range of performance is 
quite wide for both electricity and fuel usage.  The EPI analysis shows that this observation taken by 
itself is actually misleading; after accounting for additional factors, the range of performance is much 
narrower.  The red lines in Figures 2-4 take the raw energy intensity data and transform it into the 
kernel density distribution of plants that lie above or below the average energy electricity, fuel, and total 
intensity of 1.33 MMBtu/1000 pounds of raw dough, 0.91 MMBtu/1000 pounds of raw dough, and 2.25 
MMBtu/1000 pounds of raw dough represented as a percent difference.  The full range of intensity 
differences exceed 100% on either side for both energy types.  The blue lines representing the kernel 
density from the EPI analysis tells a different story.  Most of those differences come from differences 
that can be accounted for in the analysis, more or less of different product types, different climates, 
more frozen products, etc.  The range of actual efficiency, after these differences are accounted for, is 
narrower.  This is consistent with the results of a meta-analysis of EPI studies for other industries (Boyd 
2016).  In the commercial baking industry, the difference in total energy consumption between an 
“average” plant (score of 50) and an “efficient” plant (score of 75) is roughly 17%.  This matches closely 
with other food processing industries in which energy costs are smaller than other production costs. 

Figure 2 Comparing the Distribution of Electricity Intensity to Efficiency 
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Figure 3 Comparing the Distribution of Fuels Intensity to Efficiency  

 

 
 

Figure 4 Comparing the Distribution of Total Energy Intensity to Efficiency 
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5 ASSESSING POTENTIAL COVERAGE AND BIAS IN THE EPI BAKING 
INDUSTRY DATABASE 

 

Since this EPI is based on a set of data that was voluntarily supplied by the industry participants, 
for the EPI to be useful to those that may not have directly participated in the Focus, the coverage and 
possible bias of this data set should be determined.  Additionally, for EPA to use the EPI to determine 
eligibility for ENERGY STAR certification, the EPI’s underlying data set must be evaluated for industry 
coverage and bias.  Coverage addresses whether the data represents a large enough portion of the 
industry to be meaningful.  Anecdotally, the American Bakers Association and industry participants felt 
that most of the large companies and many of the smaller ones were involved.  Our analysis provides 
supporting evidence that this appears to be the case. Bias addresses the concern that, even if coverage 
is considered adequate, the fact that coverage will not be 100% means it is important to determine if 
some part of the industry is over- or under-represented. Preliminary analysis for coverage and bias was 
conducted early in the study but yielded uncertain results and was delayed until the final model was 
completed and approved by industry.  This final analysis addresses two possible sources of biases:  
product mix and plant size.  The analysis below indicates that product mix bias is not a concern, at least 
at the level at which we are able to measure.  However, the data are clearly skewed to the larger plants 
and so a size cutoff is necessary for ensuring accurate benchmarking and for ENERGY STAR certification.  
The EPI is therefore considered applicable to Large Commercial Bakeries (defined below) and ENERGY 
STAR certification would be offered only to plants that meet the size minimum.  While the analysis 
shows that this cutoff may eliminate many very small establishments, the EPI is still applicable to the 
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majority of industry production.  The following describes the data and methods used to assess the 
coverage and bias issues. 

The basis for the coverage and bias analysis is the published data from the 2012 Economic 
Census3 (NAICS Code 311812).  This analysis is complicated by the fact that Census reports plant data on 
employment and sales, and the EPI data set includes production in physical units, specifically raw dough 
processed.  In order to make a comparison, an estimate of raw dough is derived from the sales data. 

To determine coverage for our sample of commercial bakeries compared to the larger collection 
of Census data, plant sizes and product volume were considered.  Using Census published data on value 
of shipments (i.e. sales) from different sized commercial bakeries (by employment counts) and a product 
cost estimate (i.e. average cost per pound), an average product weight amount per plant in each size 
category was estimated for each size commercial bakery designated by total employees.  An example of 
a Census size category would be all plants with between 20 to 49 employees, 50 to 99 employees, 100 
and 249 employees, etc. These estimates of physical production, by size category, helped determine 
where our sample fits in relation to the Census facilities.  The following described the step-by-step 
process: 

1. For each standard Census size category, based on employment counts, the total sales value was 
divided by the number of establishments in that category to yield the average sales per plant. 

2. For each size category, the average sales value per plant was divided by the average price per lb. 
of white bread4 ($2.30) and then divided by the loss factor of 0.9 to yield the average baked 
weight/average raw dough weight.  This results in an estimate of average raw dough processed 
per plant in each category.  

a. One might argue that this price is too high because commercial level sales would be at a 
lower “wholesale price.” 

b. However, some products are likely more expensive on a per lb. basis than simple white 
bread, so it is also possible that the opposite is true, and the price is too low.  

c. Given that both a. and b. could be true, the choice of white bread as the benchmark 
price was used and is intended to keep the analysis simple and straightforward, but still 
be seen a reasonable “average price.”   

3. The average raw dough per plant for the different sizes is compared to the smallest and largest 
plants in the EPI data set. We found that: 

a. The smallest plants in the EPI data were consistent with the Census size category of 50-
99 employees. 

b. The rest of the EPI sample was consistent with the larger Census plant categories. 
4. Taking the raw dough per plant in each size category and multiplying by the number of plants in 

that category yields an estimate of raw dough production in each category and for the entire 
industry. 

                                                           
3 Information from the industry trade “Red Book” publication was also examined but the way those data were 
compiled was not conducive to a clear comparison.  The Red Book is also self-reported data that covers other 
aspects of the industry beyond those product types the EPI is focused on.  
4 Source: http://www.numbeo.com/cost-of-living/country_result.jsp?country=United+States  accessed on 
2/27/2016 
 

http://www.numbeo.com/cost-of-living/country_result.jsp?country=United+States
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Since the EPI data appear to reflect Census establishments with 50+ employees, we then looked 
at the Census sales number for plants with more (and less) than 50 employees.  Although the majority of 
the plants in the Census data are below 50 employees, plants with greater than 50 employees account 
for 87% of the total value of shipments in the industry.  This is typical of many industries; while there 
may be many very small establishments, particularly in an industry like baking, large scale production 
dominates total industry output.  Comparing the raw dough estimate from the Census data for plants 
with more than 50 employees with the total EPI production data in the same year, the EPI sample 
accounts for 78% of the raw dough produced at facilities with greater than 50 employees nationwide.  
This implies that the EPI sample covers 68% of the industry as a whole (78% * 87%). 

As expected, the EPI sample is weighted towards the large-scale commercial baking facilities.  To 
address this bias in the EPI data and for ENERGY STAR certification requirements, a minimum production 
value of 8 million pounds of raw dough is established.  This value is based on the average of the bottom 
5% of the EPI dataset.5  For comparison purposes, the average raw dough production in the Census 
category of 50-99 employees was 8.4 million lbs. 

To assess possible bias in product mix, the analysis was simpler.  When broadly looking at 
product mixes, the sample of industry supplied data had more categories than the Census information.  
Census product data were split into three types:  bread, rolls, and other categories including pies and 
cakes that were not part of the EPI focus.  When just looking at the Census data on total value from 
bread and rolls, the breakdown equates to roughly 60% bread (wheat, white, etc. and frozen) and 40% 
rolls (muffins, bagels, croissants, and frozen).  To replicate this number within the EPI sample, pan and 
hearth breads were combined and rolls, muffins, and bagels were combined.  Frozen dough was split 
between the two groups.  In this case, the product mix from the sample nearly mirrors the available 
Census product mix (see Table 3 below).  This indicates that the EPI sample is representative from a 
product mix standpoint and is not biased towards plants that produce specific products. 

Table 3 EPI Sample and Census Product Mixes 

Product type EPI Sample Census 
Pan Breads 54% - 

Hearth Breads 2% - 
Rolls 29% - 

English Muffins 4% - 
Bagels 2% - 

Frozen Dough 6% - 
Other 2% - 

   
Bread (white, wheat, rye, including frozen) 59% 59% 

Rolls (muffins, bagels, croissants) including frozen 38% 41% 
 

6 SCORING COMMERCIAL BAKING PLANT EFFICIENCY 

                                                           
5 Computed this way to avoid possible disclosure of confidential values for a single plant. 
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This section describes the spreadsheet tool that is created based on the above analysis.  
Suggestions for how to use the tool and interpret the results are also shown below.  

6.1 How the EPI Works 
The commercial baking EPI scores the energy efficiency of commercial bakeries that process more 

than 8 million pounds of raw dough annually.  To use the tool, the following information must be available 
for a plant. 

• Total energy use 
o Electricity (converted to source MMBtus by the spreadsheet tool) 
o Fuel use for all fuel types in physical units or MMBtu (converted to source MMBtus by the 

spreadsheet tool)  
• Final Product Weights in lbs. 

o Raw dough processed 
o Pan breads produced 
o Hearth breads produced 
o Rolls produced 
o English muffins produced 
o Bagels produced 
o Frozen dough produced 
o Other products 

• Weather 
o Heating degree days (HDD) 
o Cooling degree days (CDD) 

• Plant Operations 
o Is the production area air conditioned?  
o What percent of total products are frozen? 

 
Based on these data inputs, the EPI will report an Energy Performance Score (EPS) for the plant in 

the current time period that reflects the relative energy efficiency of the plant compared to that of the 
industry.  The EPS is a percentile score on a scale of 1–100.  An EPS of 75 means a particular plant is 
performing better than 75% of the plants in the industry, on a normalized basis.  ENERGY STAR defines 
the 75th percentile as the benchmark for efficiency, so plants that score 75 or better are classified as 
efficient.  The model also estimates what the energy use would be for an “average” plant (defined as the 
50th percentile) with the same production characteristics.  This overall score is complemented with similar 
efficiency scores for electricity and fuels consumption.  While the underlying model was developed from 
industry-supplied data, it does not contain or reveal any confidential information. 

6.2 Spreadsheet Tool 
To facilitate the review and use by industry energy managers, a spreadsheet was constructed to 

display the results of the EPI for an arbitrary6 set of plant-level inputs.  Energy managers were 

                                                           
6 In other words, for plant data that may not originally have been in the data set used to estimate the model 

equations. 
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encouraged to input data for their own plants and then provide comments.  A version of this 
spreadsheet corresponding to the results described in this report is available from the EPA ENERGY STAR 
web site.7  Example inputs and outputs of the spreadsheet tool are shown in Figures 5-8.   

  

                                                           
7 http://www.energystar.gov/epis  

http://www.energystar.gov/epis
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Figure 5 Input Section of the Commercial Baking EPI Spreadsheet Tool 

 

Figure 6 Output Section of the Commercial Baking EPI Spreadsheet Tool 
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Figure 7 Electricity Output Section of the Commercial Baking EPI Spreadsheet Tool 

 

Figure 8 Thermal Output Section of the Commercial Baking EPI Spreadsheet Tool 
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6.3 Use of the ENERGY STAR Commercial Bread and Roll Bakery EPI 
 EPIs are developed to provide industry with a unique metric for evaluating energy performance 
that will lead plants to take new steps to improve their energy performance.  To promote the use of EPIs, 
EPA works closely with the manufacturers through an ENERGY STAR Industrial Focus on energy efficiency 
in manufacturing to promote strategic energy management among the companies in this industry.  The 
EPI is an important tool that enables companies to determine how efficiently each of the plants in the 
industry is using energy and whether better energy performance could be expected.  The EPI and the 
Energy Performance Score also serve as the basis for ENERGY STAR recognition.  Plants that score a 75 or 
higher become eligible for ENERGY STAR certification.  

 EPA recommends that companies use the EPIs on a regular basis.  At a minimum, it is suggested 
that corporate energy managers benchmark each plant on an annual basis.  A more proactive plan would 
provide for quarterly use (rolling annual basis) for every plant in a company.  EPA suggests that the EPI 
score be used to set energy efficiency improvement goals at both the plant and corporate levels.  The EPIs 
also can be used to inform new plant designs by establishing energy intensity targets. 

 The models described in this report are based on the performance of the industry for a specific 
period of time.  One may expect that energy efficiency overall will change as technology and business 
practices change, so the models will need to be updated.  EPA plans to update these models every few 
years, contingent on newer data being made available and industry use and support of the EPI tools. 

6.4 Steps to Compute a Score 

All of the technical information described herein is built into spreadsheets available from EPA 
(http://www.energystar.gov/epis).  Anyone can download, open the EPI spreadsheets, and enter, update, 
and manage data as they choose.  The following details each step involved in computing an EPS for a plant.  

1.  User enters plant data into the EPI spreadsheet  

• Complete energy information includes all energy purchases (or transfers) at the plant for a 
continuous 12-month period.  The data do not need to correspond to a single calendar year.  

• The user must enter specific operational characteristic data.  These characteristics are those 
included as independent variables in the analysis described above.  

2.  EPI computes the Total Source Energy (TSE) Use  

• TSE is computed from the metered energy data.  

• The total site energy consumption for each energy type entered by the user is converted into 
source energy using the site-to-source conversion factors.  

• TSE is the sum of source energy across all energy types in the plant. 

• TSE per relevant unit of production is also computed. 
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3. EPI computes the Predicted “Best Practice”8 TSE  

• Predicted “Best Practice” TSE is computed using the methods above for the specific plant.  

• The terms in the regression equation are summed to yield a predicted TSE.  

• The prediction reflects the expected minimum energy use for the plant, given its specific 
operational characteristics.  

4.  EPI compares Actual TSE to Predicted “Best Practice” TSE 

• A lookup table maps all possible values of TSE that are lower than the Predicted “Best Practice” 
TSE to a cumulative percent in the population.  

• The table identifies how far the energy use for a plant is from best practice.  

• The lookup table returns a score on a scale of 1-to-100.  

• The Predicted TSE for a median and 75th percentile plant is computed based on the plant-
specific characteristics. 

• A score of 75 indicates that the building performs better than 75% of its peers.  

• Plants that earn a 75 or higher may be eligible to earn the ENERGY STAR.  

  

                                                           
8 The model computes the “best practice” for frontier models and “average practice” for ordinary least squares.  
Steps 3 and 4 are similar for the OLS models, except that the prediction is for the average energy use and the 
percentiles are relative to the average (i.e., 50th percentile). 
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