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Abstract 
 

 Organizations that implement strategic energy management programs undertake a 
set of activities that, if carried out properly, have the potential to deliver sustained energy 
savings.  One key management opportunity is determining an appropriate level of energy 
performance for a plant through comparison with similar plants in its industry.   
Performance-based indicators are one way to enable companies to set energy efficiency 
targets for manufacturing facilities.  The U.S. Environmental Protection Agency (EPA), 
through its ENERGY STAR program, is developing plant energy performance indicators 
(EPIs) to encourage a variety of U.S. industries to use energy more efficiently.  This 
report describes work with the pharmaceutical manufacturing industry to provide a plant-
level indicator of energy efficiency for facilities 1  that develop and manufacture 
pharmaceutical products in the United States.  How indicators are employed in EPA’s 
efforts to encourage industries to voluntarily improve their use of energy is discussed as 
well.  The report describes the data and statistical methods used to construct the EPI for 
pharmaceutical manufacturing plants.  The individual equations are presented, as well as 
instructions for using those equations as implemented in an associated Excel workbook.  
 

                                                 
1 Pharmaceutical manufacturing may occur in dedicated purpose buildings or in multi-use, campus-like 
settings with both research labs and manufacturing activities.  We use the term “facilities” to encompass 
both types of locations. 



 
1  Introduction 

 
 ENERGY STAR was introduced by EPA in 1992 as a voluntary, market-based 
partnership to reduce air pollution through increased energy efficiency.  This government 
program enables industrial and commercial businesses as well as consumers to make 
informed decisions that save energy, reduce costs, and protect the environment. 
 
 A key step in improving corporate energy efficiency is to institutionalize a 
strategic energy management framework and corporate energy program.  The US EPA 
has observed that companies with established energy management programs based on a 
framework of continuous improvement achieve greater results.  Based on the best 
practices of leading ENERGY STAR partners and informed by management standards 
for quality and environmental management (ISO 9000 & 14001), the US EPA developed 
the ENERGY STAR Guidelines for Energy Management that identify the components of 
successful energy management (EPA 2003).  These include: 
 

• Commitment from a senior corporate executive to manage energy 
across all businesses and facilities operated by the company; 

• Appointment of a corporate energy director to coordinate and direct 
the energy program and multi-disciplinary energy team; 

• Establishment and promotion of an energy policy; 
• Development of a system for assessing performance of the energy 

management efforts, including tracking energy use as well as 
benchmarking energy in facilities, operations, and subunits therein; 

• Setting of goals at the corporate, facility, and subunit levels; 
• Establishment of an action plan across all operations and facilities, as 

well as monitoring successful implementation and promoting the value 
to all employees; 

• Active communication across, and creation of rewards for the success 
of the program; and, 

• Regular reevaluation of energy goals and action plans. 
 

 
 Of the major steps in energy management program development, benchmarking 
energy use by comparing current energy performance to that of a similar entity is critical.  
In manufacturing, it may take the form of detailed comparisons of specific production 
lines or pieces of equipment, or it may be performed at a higher organizational level by 
gauging the performance of a single manufacturing plant to its industry.  Regardless of 
the application, benchmarking enables companies to determine whether better energy 
performance could be expected.  It empowers them to set goals and evaluate their 
reasonableness. 



 

2  Benchmarking the Energy Efficiency of Industrial Plants 
 
 Among U.S. manufacturers, few industries participate in industry-wide plant 
benchmarking.  The petroleum and petrochemical industries each support plant-wide 
surveys conducted by a private company, and are provided with benchmarks that address 
energy use and other operational parameters related to their facilities.  Otherwise, most 
industries have not benchmarked energy use across their plants.  As a result, some energy 
managers find it difficult to determine how well their plants might perform. 
 
 The US EPA’s ENERGY STAR program released its first energy performance 
benchmarking tool in 1999 for commercial buildings.  This whole-building energy 
performance benchmarking and rating tool was the first to enable comparisons between a 
single facility and the energy performance of the entire sector (EPA 2007).  Since then, 
EPA has expanded its benchmarking and rating systems to other commercial and 
industrial subsectors.   
 
 In 2000, EPA began developing a method for developing benchmarks of energy 
performance for plant-level energy use within various manufacturing industries.  
Discussions yielded a plan to use a source of data that would nationally represent 
manufacturing plants within a particular industry, create a statistical model of energy 
performance for the industry’s plants based on these data along with other available 
sources for the industry, and establish the benchmark on the comparison of those best 
practices, or best-performing plants, to the industry.  The primary data sources would be 
the Census of Manufacturers, Annual Survey of Manufacturing, and Manufacturing 
Energy Consumption Survey collected by the Census Bureau, or data provided by trade 
associations and individual companies, when warranted by the specific industry 
circumstance and participation.  
 
 At the outset, the term “plant benchmark” was discussed.  Industry engineers 
routinely develop benchmarks at many levels of plant operation, but they expressed 
concern that using the word “benchmark” would be confusing and could imply a 
particular process or tool.  For this reason, it was decided that a simple descriptive name 
would be clearer; thus, ENERGY STAR plant energy performance indicator (EPI) was 
adopted. 
 
 In 2005, EPA released the first energy performance indicator for automobile 
assembly plants.  Boyd, Dutrow, and Tunnessen (2008) describes early experiences in 
developing a statistically based plant energy performance indicator for the purpose of 
benchmarking manufacturing energy use.  Additional details about the auto and corn 
refining industries are described in Boyd (2005, 2008), respectively.  This report 
describes the basic concept of benchmarking and the statistical approach employed in 
developing performance-based energy indicators for pharmaceuticals, the evolution of the 
analysis done for this industry, the final results of this analysis, and ongoing efforts by 
EPA to improve the energy efficiency of this industry and others. 



 

2.1  Scope of an Indicator — Experience with the Pharmaceutical 
Manufacturers 
 
 EPA initiated discussions about developing a plant-level benchmark with the 
pharmaceutical manufacturers in 2004.  Companies with facilities located within the 
United States were invited to participate in discussions.  Initial reaction from most 
companies was supportive yet skeptical about whether a useful benchmark could be 
developed.  
 
 The scope for ENERGY STAR EPIs is usually set at the plant-level, and is not 
process-specific.  The EPI relates plant inputs in terms of all types of energy use to plant 
outputs as expressed in a unit of production.  Discussion with industry representatives 
helped to define the energy focus of the model and the appropriate metrics.  It was 
decided that value of product shipments would not provide a uniform measure of activity.  
Industry pricing and markups vary widely depending on the product, making the total 
value of product shipments an unreliable measure of production.  While the level of 
production is clearly a component of the energy use, much of the energy in this industry 
is devoted to environmental controls.   
 
 Pharmaceutical manufacturing encompasses a range of activities.  Three primary 
types of activities were identified: Bulk Chemical, Fill/Finish, and Research & 
Development (defined in table 1 below).  The first two categories describe the two basic 
stages of the manufacturing process.  This industry differs from other industries due to 
the large component that the third type of activity, Research & Development (R&D), 
plays in this industry.  While R&D may be conducted at a separate facility, it is also 
common for R&D to be co-located with manufacturing.  Thus, it was decided that the 
pharmaceutical manufacturing EPI would have to consider the role that co-located R&D 
has on energy use at pharmaceutical manufacturing plants.   
 
 The model is designed to account for major, measurable impacts that affect a 
plant’s energy use.  Further discussion with the industry led to a focus on a limited set of 
measures to account for the differences between plants.  These measures included facility 
size (in square feet), the fraction of these four space types representing the amount of 
facility space allocated to these activities, and the total operation hours for a plant to 
capture level of utilization.  Finally, the heating and cooling loads of the plants would 
differ depending on their local climate/weather, so heating and cooling degree day (HDD 
and CDD, respectively) data were used in the model as well. 
 

2.2  Data Sources 
 

Since the categories of functional space types are not collected in the Census of 
Manufacturers, data was provided by eight companies that volunteered to participate in 
the study.  These companies included Allergan, E.I. Lilly, GlaxoSmithKline, Johnson & 



Johnson, Merck, Pfizer, Roche, and Schering-Plough.2  Companies provided the plant 
size (floor space), functional space types (listed above), and annual hours of operation for 
each space type.  Energy data for fossil fuel and electricity use on a data template 
prepared by one of the companies was provided by companies for each plant.  Climate 
data in the form of HDD and CDD were linked to the plant locations based on the first 
three digits of the plant ZIP code for each year of the data.  The HDD/CDD data are the 
same as those used by ENERGY STAR for the National Energy Performance Rating 
System for buildings. 

 
Table 1 Definition of Pharmaceutical Facility Space Types 

 
Bulk Chemical 
Areas where both active and inactive ingredients are prepared in bulk form, including 
mixing, milling and drying of powders, and the mixing of liquids, gels and creams. All 
office space that shares HVAC with Bulk Chemical space will be considered as Bulk 
Chemical space.         
    
Fill/Finish 
All indoor areas used for Fill or Finish processes OR other manufacturing, production, or 
warehousing with climate-controlled environments due to product requirements.  Fill or 
Finish includes tabulating, encapsulation of powders or liquids, the final 
bottling/packaging of this product, and the filling of liquids, gels or creams in their 
consumer packages.  All office space that shares HVAC with Fill/Finish space will be 
considered Fill/Finish space.        
    
Research & Development 
Lab buildings including animal laboratories, storage space, laboratories, pilot plants and 
offices located in R&D facilities.  This space includes in-process labs and QA labs.  All 
office space that shares HVAC with R & D / Laboratory space will be considered R & D / 
Laboratory space.         
   
Other 
All other space that does not share HVAC with Bulk Chemical, Fill/Finish, Sterile 
Fill/Finish, Warehousing, or Laboratory spaces.  

     
Three years of data (2004-2006) were provided for 61 locations.  However, some 

of these locations were R&D facilities with no manufacturing activities.  The model 
excluded sites with more than 60% office/other or less than 10% manufacturing.  The 
final dataset includes 95 observations.  While the data was voluntarily provided by the 
companies identified above, these companies represent a large share of this industry.  
Comparing the voluntary data to Census data, the energy use in the sample comprised 
over 50% of the published total for NAICS 32541 Pharmaceutical and Medicine 
Manufacturing.  Comparing the total value of shipments in the first version of the model 
(using Census data) for the companies that provided floor space data to the published 
total, the sample comprised over half of the total published value of shipments for this 
NAICS code. 
 

                                                 
2 The data used to develop the EPI are proprietary business information and was voluntarily provided to 

Duke University under a nondisclosure agreement with the respective companies. 



Table 2 provides the sample mean and standard deviation for the raw variables in 
the dataset.  Total source energy (TSE) is the variable used to aggregate energy; that is, 
kilowatt-hours (kWh) are converted to British thermal units (Btu) using 10,236 Btu/kWh.  
The study focuses on the energy use per square foot, so these data are of particular 
interest.  A histogram of the TSE used per sq. ft. is shown in Figure 1. 
 
 

Table 2  Summary Statistics from the Plant Data Included in the Study 
 
Variable Mean St. Dev. 
HDD (thousand) 2.443 2.045 
CDD (thousand) 1.882 1.624 
Square Ft (thousand) 724 1210 
Bulk Chemical Share 27% 0.239 
Fill/Finish Share 20% 0.209 
R&D Share 10% 0.130 
Total Source Energy (MMBtu) per thousand sq.ft. 1194 834 
Utilization (percent) 62% 0.252 

 
 

Figure 1  Distribution of Energy Intensity 
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3  Statistical Approach 
 
The goal of this study was to develop an estimate of the distribution of energy 

efficiency across the industry.  Efficiency is the difference between the actual energy use 
and “best practice,” i.e., the lowest energy use achievable.  What is achievable is 
influenced by operating conditions that vary between plants, so the measure of best 
practice must take these conditions into account.  Statistical models are well-suited for 
accounting for these types of observable conditions but typically are focused on average 
practice, not best practice.  However, stochastic frontier regression analysis is a tool that 
can be used to identify “best practice.” This section provides the background on the 
stochastic frontier, a discussion on the review process and evolution of the model’s 
equations, and the final model estimates.  

3.1  Stochastic Frontier 
 
The concept of the stochastic frontier analysis that supports the EPI can be easily 

described in terms of the standard linear regression model, which is reviewed in this 
section.  A more detailed discussion on the evolution of the statistical approaches for 
estimating efficiency can be found in Green (1993).  Consider at first the simple example 
of a production process that has a fixed energy component and a variable energy 
component.  A simple linear equation for this can be written as: 

 
 

 i iE yα β= +  (1) 
 

where 
 
E = energy use of plant i and 
y = production of plant i. 
 

 Given data on energy use and production, the parameters α and β  can be fit via a 
linear regression model.  Since the actual data may not be perfectly measured and this 
simple relationship between energy and production may only be an approximation of the 
“true” relationship, linear regression estimates of the parameters rely on the proposition 
that any departures in the plant data from Eq. 1 are “random.”  This implies that the 
actual relationship, represented by Eq. 2, includes a random error term ε that follows a 
normal (bell-shaped) distribution with a mean of 0 and variance of 2σ .  In other words, 
about half of the actual values of energy use are less than what Eq. 1 would predict, and 
half are greater:  
 

Εi = α + β  yi + εi 
 (2) 

ε ~ Ν (0,σ2)  



 
 The linear regression gives the average relationship between production and 
energy use.  If the departures from the average, particularly those that are above the 
average, are due to energy inefficiency, we would be interested in a version of Eq. 1 that 
gives the “best” (lowest) observed energy use.  For example, consider that capacity 
utilization can influence the energy use per unit of production, due to the fixed and 
variable components of plant energy use (see Figure 2).  A regression model can find the 
line that best explains the average response of energy use per unit of production to a 
change in utilization rates.  The relationship between the lowest energy consumption per 
unit of production relative to changes in utilization can be obtained by shifting the line 
downward so that all the actual data points are on or above the line.  This “corrected” 
ordinary least squares (COLS) regression is one way to represent the frontier. 
 

While the COLS method has its appeal in terms of simplicity, a more realistic 
view is that not all the differences between the actual data and the frontier are due to 
efficiency.  Since we recognize that there may still be errors in data collection/reporting, 
effects that are unaccounted for in the analysis, and that a linear equation is an 
approximation of the complex factors that determine manufacturing energy use, we still 
wish to include the statistical noise, or “random error,” term vi in the analysis but also add 
a second random component ui to reflect energy inefficiency.3  Unlike the statistical noise 
term, which may be positive or negative, this second error term will follow a one-sided 
distribution.  If we expand the simple example of energy use and production to include a 
range of potential effects, we can write a version of the stochastic frontier model as 
energy use per unit of production as a general function of systematic economic decision 
variables and external factors, 

 
 ( , , ; )i i i i iE h Y X Z β ε= +  (3) 

i ii u vε = −  v ~ Ν [0,σv
2] ,   

 
where 
 
E = TSE, Total Source Energy (or other measure of total fuel and electricity); 
Y = production, measured by dollar shipments or physical production; 
X = systematic economic decision variables (i.e., labor-hours worked, materials  
 processed, plant capacity, or utilization rates); 
Z = systematic external factors (e.g., heating and cooling loads); and, 
β = all the parameters to be estimated. 
 

 We assume that energy (in)efficiency u is distributed according to one of several 
possible one-sided statistical distributions, for example exponential, half normal, or 
truncated normal.  We also assume that the two types of errors are uncorrelated, i.e. 
σu,v = 0 .  It is then possible to estimate the parameters of Eq. 3, along with the 
distribution parameters of u.    

                                                 
3 By random we mean that this effect is not directly measurable by the analyst, but that it can be 

represented by a probability distribution. 



 
 One advantage of the approach is that the parameters used to normalize for 
systematic effects and describe the distribution of efficiency are jointly estimated.  The 
standard regression model captures the behavior of the average (see solid line in Figure 2), 
but the frontier regression captures the behavior of the best performers (the dotted line in 
Figure 2).  For example, if the best performing plants were less sensitive to capacity 
utilization because they use better shutdown procedures, then the estimated slope of the 
frontier capacity utilization curve would not be as steep as the slope for the average 
plants.    
 

Figure 2  COLS and Frontier Regression of Energy Use per Unit of 
Production against Capacity Utilization 
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Another advantage of this method is that we can test if the differences in energy 

use, represented by the terms u and v, are statistically significant.  If the estimated 
variance of u is small, we can conclude that the simpler statistical model in Eq. 2 is valid 
and base our measurements on those results.  Therefore the frontier yields a more general 
analysis that allows for either a one-sided (skewed) distribution representing efficiency or 
a more “normal” (bell-shaped) distribution.  If the former is the case then we interpret 
that as meaning the many plants are close to one another in terms of energy use, with a 
smaller number being “further” from the group of good performers.  In the latter case, 
that of the bell-shaped, normal efficiency distribution, we have a few “good performers,” 
a large number of “average” plants, and a few “poor performers.”  In either case we have 
a statistical approach to assign a ranking for the plants 
 

For simplicity, we assume that the function h( ) is linear in the parameters, but 
allow for non-linear transformations of the variables.  In particular, production, materials, 



and labor enter the equation in log form, as does the energy variable.  This means that the 
terms u and v can easily be interpreted as percentage deviations in energy, rather than 
absolute.  This has implications for the model results since we now think of the 
distributional assumptions in terms of percent, rather than absolute level.  When there is 
wide variation in plant scale, this seems appropriate and may avoid possible 
heteroscedasticity in either or both error terms. 
 

Given data for any plant, we can use Eq. 3 to compute the difference between the 
actual energy use and the predicted frontier energy use:  

 
 [ ] i i( , , ; )i i i iE h Y X Z u vβ− = −  (4) 

 
In the case where the frontier model is appropriate, we have estimated the probability 
distribution of u.  Eq. 5 represents the probability that the plant inefficiency is greater 
than this computed difference:  
 

 
( )Probability ( , , ; )

1 ( ( , , ; ))
i i i i

i i i i

energy inefficiency E h Y X Z

F E h Y X Z

β

β

⎡ ⎤≥ − =⎣ ⎦
− −

 (5) 

 
F( ) is the cumulative probability density function of the appropriate one-sided density 
function, i.e., gamma, exponential, truncated normal, etc.  The value 1 - F( ) in Eq. 5 
defines the EPI rating and may be interpreted as a percentile ranking of the energy 
efficiency of the plant.  In practice, we only can measure i i( , , ; )i i i iE h Y X Z u vβ− = − , 
so this implies that the EPI rating, ( ) ( )i i1 ( , , ; ) 1i i i iF E h Y X Z F u vβ− − = − − , is 
affected by the random component of vi; that is, the rating will reflect the random 
influences that are not accounted for by the function h(*).   
 

In the case where the frontier model is not appropriate there is no u term and 
corresponding estimate, only v.   
 
 [ ] i( , , ; )i i i iE h Y X Z vβ− =  (6) 
 
We can drop the minus sign for v since the normal distribution is two sided.  The estimate 
of the variance v ~ Ν [0,σv

2] can be used in Eq. 5 where F( ) is now the cumulative 
probability density function of a standard normal distribution. 
 

Since this ranking is based on the distribution of inefficiency for the entire 
industry, but normalized to the specific systematic factors of the given plant, this 
statistical model allows the user to answer the hypothetical but very practical question, 
“How does my plant compare to everyone else’s in my industry, if all other plants were 
similar to mine?” 

 



3.2  Evolution of the Model 
 
 The statistical model used in the EPI evolved over a period of time, based on 
comments from industry reviewers and subsequent analyses.  Industry participants tested 
each version of the model.  Companies were asked to input actual data for all of their 
plants and then to determine whether the results were consistent with any energy 
efficiency assessments that may have been made for these plants.  The resulting 
comments improved the EPI. 
 

The primary areas for comment and development included the best way to 
incorporate plant utilization, treatment of office and “other” space types, and the role of 
climate.  These issues included whether to use annual labor (person hours) or hours of 
operation to measure utilization, whether to separately estimate the energy implications 
of office and “other,” and whether climate has different impact for different space types. 

 
In the early stages, the use of labor hours (i.e. average annual employment times 

the average number of hours worked per person) was proposed to represent the utilization 
of a facility.  It was argued that energy is used to provide services and comfort for the 
people working to make products and services.  Measuring labor (work hours) can 
present problems because hourly production workers may have careful accounting of 
work time, but salaried employees may not.  Differences in labor productivity may also 
mask the amount of time a facility is operating and using energy.  It was proposed to use 
the hours of operation in each space type as a more direct measure.   

 
During the analysis it was observed that some plants with a high share of “other” 

space types had very high energy use, but others had very low.  The differences were 
dramatic.  A similar disparity, but smaller in range, was observed for office space.  In the 
absence of more detail about the nature of the “other” space types it was impossible to 
assign a meaningful estimate.  One argument was that both of these space types were 
support functions for the primary activities of manufacturing and R&D.  In fact, office 
space was often integrated in those other functional space types.  “Other” space might 
even be large energy support facilities required for manufacturing, e.g. a boiler house.  It 
was proposed to treat these as support functions so that the space in office and other was 
allocated back to the three functional space types: Bulk Chemical, Fill/Finish, and R&D. 

 
Different space types may have different requirements for climate control.  These 

differences would be reflected in the energy use that is driven by heating and cooling 
loads.  Energy is used for environmental, safety, and comfort control in this industry, but 
bulk chemical synthesis requires process energy as well.   From that perspective it is 
important to allow the model to be flexible in the representation of HDD and CDD for 
different space types. 

 
Throughout the process the estimation approach provided statistical tests to 

determine the confidence level of the adjustment factors that would or would not be 
included.  Use of labor vs. operation hours could not be tested statistically since only 
operation hours were provided by the companies.  This choice is instead driven by data 



availability.  Treating office and other space types as support functions is consistent with 
the results presented below.  In particular, treating “other” as a separate category resulted 
in a very high, but statistically insignificant, parameter for energy use.  Allocating office 
and other resulted in lower standard errors for the other space types in the model.  A 
flexible approach to measuring impacts of HDD and CDD was taken in the model 
development.  Bulk chemical space types had lower response to climate (both HDD and 
CDD) that was statistically significant.  The two remaining space types did not show 
statistically different responses from each other.  The model was also estimated with non-
linear (quadratic) terms of climate and utilization (to capture possible diminishing 
returns).  These terms were not statistically significant.  

 

3.3  Model Estimates 
 

For simplicity, we assume that the function h( ) is log linear in energy and facility 
size, and linear in all other variables, but allow for non-linear transformations of the 
variables.  In particular, we tested non-linear (quadratic) and second order interaction 
terms in some of the variables where appropriate.  The model was estimated with non-
linear (quadratic) terms of climate and utilization (to capture possible diminishing 
returns).  These terms were not statistically significant. Several alternatives for the 
distribution of the inefficiency term u were tried. 

 
The final version of the model is:  

 

 1 2 3 4 5 6
2

11 12 1

ln( ) % & %

% % ln( )

E a a HDD a CDD a Bulk a F F a Util

b HDD Bulk b CDD Bulk c ft u v

= + + + + + +

+ + + −
 (7) 

 
where  
 
 E = Total Source Energy use in MMBtu;  
 ft2 = total floor space (thousands of square feet); 
 UTIL = plant utilization rate, defined as annual hours of operation / 8760; 
 HDD = heating degree days for the plant location and year (thousands); 
 CDD = cooling degree days for the plant location (thousands); 
 Bulk% = ratio of bulk chemical manufacturing space to the total;  
 F & F% = ratio of fill/finish manufacturing space to the total;  

 
The error term v is distributed as N(0, σv

2) and error term u  is distributed as truncated 
normal with variance σu

2. 
 
The estimated parameters of the model are shown in Table 3.  All parameters with 

an asterisk are statistically significant at the 10% level or greater in a two-tailed test.  All 
other estimates shown are significant at the 99% level in a two-tailed test.  The large size 
of λ suggests that the model has very little error attributable to random noise and that 
most departures are attributable to inefficiency.  The coefficients for bulk chemical and 
fill/finish are interpreted as relative to R&D space. The stylized facts are that bulk 



chemical is the most intensive, i.e. the coefficient is positive and larger than for fill/finish.  
It also has almost no sensitivity to climate, since the interaction coefficients, b11 and b12, 
for HDD and CDD are of opposite sign and nearly identical magnitude to a1 and a2, 
respectively.  Fill/finish space is also more intensive than R&D.  The coefficient on the 
log of sq. ft. does not suggest any economies of scale in energy use for this industry. 
 
 

Table 3  TSE Model Estimates 
 

Variable Estimate Standard Error t-ratio 
Constant 3.026 0.572 5.29 
BULK % 2.952 0.876 3.37 
FF % 0.836 0.279 2.99 
LSQFT 0.977 0.053 18.47 
UTILIZATION 1.858 0.301 6.17 
HDD * BULK % -0.275* 0.166 -1.66 
HDD 0.298 0.095 3.15 
CDD * BULK % -0.503 0.186 -2.71 
CDD 0.417 0.106 3.93 
 
Error Distribution Parameters 

   

λ 1.56E+07 7.06E+12 0
σu 0.527282 0.052639 10.017

 
 

4  Judging Pharmaceutical Manufacturing Plant Energy 
Efficiency 

 

4.1  How the EPI Works 
 

The pharmaceutical manufacturing EPI rates the energy efficiency of a 
pharmaceutical manufacturing plant based in the United States.  To use the tool, the 
following information must be available for a plant: 

 
• Annual energy use for the current year and a reference year as defined 

by the user; 
• Total facility floor space; 
• Allocation of space for each space type; 
• Hours of operation for each space type; 
• Five-digit ZIP code for the location of the plant if the default 30-year 

average HDD and CDD data are used; otherwise, the user provides 
actual annual HDD and CDD for that year. 

 
Based on these data inputs, the pharmaceutical manufacturing EPI will calculate an 
energy performance rating for the plant in the current time period that reflects the relative 



energy efficiency of the plant compared to that of the industry.  The performance rating is 
a percentile rating on a scale of 0–100.  Plants that rate 75 or better are classified as 
efficient (ENERGY STAR defines the 75th percentile as “efficient”).  A rating of 75 
means a particular plant is performing better than 75% of the plants in the industry.  
Plants that rate a 75 or higher on the EPI are then eligible for ENERGY STAR 
recognition and certification.  For ENERGY STAR recognition of pharmaceutical plants, 
more than 50% of the plant floor space must be considered manufacturing (bulk chemical 
and fill/finish). 
 
 The model also reports on energy use for the average plant in the industry 
(defined as the 50th percentile) and the efficient plant.  This is also reported as an energy 
output ratio (million Btu/ sq. ft.).  While the underlying model was developed from data 
for individual facilities, it does not contain or reveal any confidential information. 

4.2  Spreadsheet Tool 
 

To facilitate the review of, and use by, industry energy managers, a spreadsheet 
was constructed to display the results of the EPI for any actual or hypothetical plant-level 
inputs.  The spreadsheet accepts the raw plant-level inputs described above, computes the 
values for h( ), and then displays the results from the truncated normal distribution 
functions for the model presented in Eq. 7.  The results are based on user-input values of 
the basic model input described above.  This aids in comparing the magnitude of the 
systematic effects attributable to changes in those inputs on the efficiency distribution by 
graphically displaying the results.  The energy managers were encouraged to input data 
for their own plants and then provide comments on the observed results.  A version of 
this spreadsheet which corresponds to the results described in this report (release 2 
(2/22/2010), is available from the EPA ENERGY STAR web site.4  An example of the 
input section of the spreadsheet is shown in Figure 3.  The results section for TSE use is 
shown in Figure 4.    

 

4.3  Summary Results 
 
Although the pharmaceutical manufacturing EPI is intended to produce plant-

specific analysis of energy efficiency, some broad inferences about efficiency in 
pharmaceutical manufacturing can be made based on the models and the underlying data.  
The average energy consumed per sq. ft. of manufacturing space was 1,210 million Btu.  
If we compute the EPI model’s “best practice” estimates (i.e., the predicted values for the 
function h ( ) for every plant in the dataset), we obtain the results shown in Table 5.  The 
average “best practice” consumption per sq. ft. would be 806 million Btu, or about a one-
third reduction in energy use below the average.  The variety of plants still implies a 
range of performance.  The distribution of actual and best practice based on our sample is 
shown in Figure 5. 
 

                                                 
4 http://www.energystar.gov/EPIS 
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Figure 3 Input Section of the EPI Spreadsheet Tool 

 

 
 
 

Figure 4  Results Section of the EPI Spreadsheet Tool 
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Figure 5 Comparison of the Distribution of Actual and Best Practice Energy 
Intensity (MMBtu/thousand sq. ft.) 
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Table 5 Summary Statistics for the Predicted “Best Practice” Values of Fossil 
Fuel, Electric, and TSE Aggregate Energy Use per Vehicle 

 
 TSE  106 Btu/103 square feet  
 Actual Performance Best Practice 
Mean 1,210 806 
Median 1,391  890  

 

4.4  Caveats 
 
This model was estimated using a set of plant data for specific years and locations.  

The spreadsheet is intended to apply to other pharmaceutical manufacturing plants, not 
just those in the original dataset; in this sense, the model is being used to measure 
efficiency behavior beyond the original sample dataset.  The use of plant-level 
information that is dramatically different from that used to develop the model may 
produce unreliable results.  Users of the model equations presented above and 
implemented in the spreadsheet should consider if the plant-level data inputs are within a 
similar range as those use to estimate the model parameters (see below).  
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As is described above, the analysis that supports the model excluded sites with 
more than 60% office/other space or less than 10% manufacturing.  For example, this 
means that the model may not produce reliable results for a facility that is exclusively 
R&D.  By the same token, if the energy use for different space types is sub-metered or 
can be reasonably estimated via an allocation, the model could be used to benchmark 
sub-sets of the plant that more closely conform to the limits of the data that underlie the 
model.  Different types of manufacturing operations, e.g. medical devices, may seem 
similar to pharmaceutical manufacturing; using this tool to benchmark energy use for 
these types of operations should only be approached with judgment and care in 
interpreting the results since these types of facilities were not included in the primary data 
set.  This does not mean that this tool cannot be used to inform management about energy 
use in more diverse applications, but that it is not the primary focus.  
 

For purposes of recognition by EPA under the ENERGY STAR program, 
additional limits are placed on the types of plants that can use the EPI tool.  Plants must 
have more than 50% of the plant floor space in manufacturing: either bulk chemical, 
fill/finish, or some combination of the two.  This minimum requirement for ENERGY 
STAR recognition must either be met for the entire facility or via sub-metered energy use 
for the space types that are included in the EPI and ENERGY STAR application.  This 
can be met by sub-metering the manufacturing space itself, or by sub-metering R&D / 
Other space and subtracting it from the plant size and energy inputs.  
  

4.5  Use of the ENERGY STAR Pharmaceutical Manufacturing EPI 
 
 After several years of work with the pharmaceutical manufacturers, the ENERGY 
STAR pharmaceutical manufacturing EPI is now complete as a spreadsheet tool for 
calculating EPI ratings.  EPA intends to use the EPI to motivate improvement in energy 
performance in pharmaceutical manufacturing.  EPA works closely with the 
manufacturers, through an ENERGY STAR Industrial Focus on energy efficiency in 
pharmaceutical manufacturing, to promote strategic energy management among the 
companies in this industry.  The pharmaceutical manufacturing EPI is an important tool 
that enables companies to determine how efficiently each of the plants in the industry is 
using energy and whether better energy performance could be expected. 
 
 EPA recommends that companies use the pharmaceutical manufacturing EPI on a 
regular basis.  At a minimum, it is suggested that corporate energy managers benchmark 
each pharmaceutical manufacturing plant on an annual basis.  A more proactive plan 
would provide for quarterly use for every plant in a company.  EPA suggests that the EPI 
rating be used to set energy efficiency improvement goals at both the plant and corporate 
levels. 
 
 The model described in this report is based on the performance of the industry for 
a specific period of time.  One may expect that energy efficiency overall will change as 
technology and business practices change, so the model will need to be updated.  EPA 
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plans to update this model every few years, contingent on newer data being available for 
this industry. 
 

4.6  Steps to Compute a Rating  
 
All of the technical information described herein is built into a spreadsheet available from 
EPA (http://www.energystar.gov/epis).  Anyone can download, open the EPI spreadsheet 
and enter, update, and manage data as they choose.  The following details each step 
involved in computing an EPI rating for a plant.  
 
1.  User enters plant data into the EPI spreadsheet  

• Complete energy information includes all energy purchases (or transfers) at the 
plants for a 12-month period.  The data do not need to correspond to a calendar 
year.  

• The user must enter specific operational characteristic data.  These characteristics 
are those included as independent variables in the analysis described above.  

2.  EPI computes the Total Source Energy Use  
• TSE is computed from the metered energy data.  
• The total consumption for each energy type entered by the user is converted into 

source energy using the source-to-site conversion factors.  
• TSE is the sum of source energy across all energy types in the plant. 
• TSE per square foot is also computed. 

3. EPI computes the Predicted “Best Practice” TSE  
• Predicted “Best Practice” TSE is computed using the methods above for the 

specific plant.  
• The terms in the regression equation are summed to yield a predicted TSE.  
• The prediction reflects the expected minimum energy use for the building, given 

its specific operational constraints.  
4.  EPI compares Actual TSE to Predicted “Best Practice” TSE 

• A lookup table maps all possible values of TSE that are lower than the Predicted 
“Best Practice” TSE to a cumulative percent in the population.  

• The table identifies how far the energy use for a plant is from best practice.  
• The lookup table returns a rating on a scale of 1-to-100.  
• The Predicted TSE for a median and 75th percentile plant is computed based on 

the plant specific characteristics. 
• A rating of 75 indicates that the building performs equal to or better than 75% of 

its peers.  
• Plants that earn a 75 or higher may be eligible to earn the ENERGY STAR.  

 
 



 21 

5  References 
 
Gale A. Boyd, "Estimating Plant Level Manufacturing Energy Efficiency with Stochastic Frontier 
Regression", The Energy Journal, Vol 29, No. 2, pp 23-44, (2008) 
 
Boyd, G., E. Dutrow and W. Tunnessen, “The Evolution of the Energy Star Industrial Energy 
Performance Indicator for Benchmarking Plant Level Manufacturing Energy Use.” Journal of 
Cleaner Production, Invited paper for the special issue Pollution Prevention and Cleaner Production 
in the United States of America, Volume 16, Issue 6, pp 709-715, April  2008 
 
Boyd, G.A., “A Statistical Model for Measuring the Efficiency Gap between Average and Best 
Practice Energy Use: The ENERGY STAR™ Industrial Energy Performance Indicator,” Journal of 
Industrial Ecology, Vol. 9 (3): pp 51-56, (2005) 
 
EPA, 2003, Guidelines for Energy Management, U.S. Environmental Protection Agency, 
Washington, DC; available online at http://www.energystar.gov/index.cfm?c=guidelines. 
guidelines_index.  
 
Greene, W.H., 1993, “The Econometric Approach to Efficiency Analysis,” pp. 68–119 in 
The Measurement of Productive Efficiency: Techniques and Applications, H. Fried, et al., 
(editors), Oxford University Press, NY.  
 
 
 


