Thermal Enclosure System

1. High-Performance Fenestration & Insulation

1.1 - Fenestration meets or exceeds specification in Item 2.1 of the National Rater Design Review Checklist.

1.2 - Insulation meets or exceeds specification in Item 3.1 of the National Rater Design Review Checklist.

1.3 All insulation achieves Grade I install. per ANSI / RESNET / ICC Std. 301. Alternatives in Footnote 46.

2. Fully-Aligned Air Barriers

2.1 - Dropped ceilings / soffits below unconditioned attics, and all other ceilings.

2.2 - Walls behind showers, tubs, staircases, and fireplaces.

2.3 - Attic knee walls and skylight shaft walls.

2.4 - Walls adjoining porch roofs or garages.

2.5 - Double-walls and all other exterior walls.

2.6 Floors above garages, floors above unconditioned basements or crawlspaces, and cantilevered floors.

2.7 All other floors adjoining unconditioned space (e.g., rim / band joists at exterior wall or at porch roof).

3. Reduced Thermal Bridging

3.1 - For insulated ceilings with attic space above (i.e., non-cathedralized), Grade I insulation extends to the inside face of the exterior wall below and is ≥ R-21 in CZ 1-5; ≥ R-30 in CZ 6-8.

3.2 - For slabs on grade in CZ 4-8, 100% of slab edge insulated to ≥ R-5 at the depth specified by the 2009 IECC and aligned with the thermal boundary of the walls.

3.3 - Insulation beneath attic platforms (e.g., HVAC platforms, walkways) ≥ R-21 in CZ 1-5; ≥ R-30 in CZ 6-8.

3.4 - At above-grade walls separating conditioned from unconditioned space, one of the following options used (rim / band joists exempted):

3.4.1 Continuous rigid insulation, insulated siding, or combination of the two is:

- ≥ R-3 in CZ 1-4; ≥ R-5 in CZ 5-8; ≥ R-6 in CZ 6-8; ≥ R-21 in CZ 1-5; ≥ R-30 in CZ 6-8.

3.4.2 Structural Insulated Panels OR Insulated Concrete Forms OR Double-wall framing OR; ≥ R-6 to edge OR.

3.4.3 Advanced framing, including all of the items below:

- Corners insulated ≥ R-6 to edge AND.
- Headers above windows & doors insulated ≥ R-3 for 2x4 framing or equivalent cavity width, and ≥ R-5 for all other assemblies (e.g., with 2x6 framing) AND.
- Framing limited at all windows & doors to one pair of king studs, plus one pair of jack studs per window opening to support the header and sill, AND.
- Interior / exterior wall intersections insulated to same R-value as rest of exterior wall.
- Minimum stud spacing of 16 in. o.c. for 2x4 framing in all Climate Zones and, in CZ 6-8, 24 in. o.c. for 2x6 framing.

4. Air Sealing

4.1 - Ducts, flues, shafts, plumbing, piping, wiring, exhaust fans, & other penetrations to unconditioned space sealed, with blocking / flashing as needed.

4.2 - Recessed lighting fixtures adjacent to unconditioned space ICAT labeled and gasketed. Also, if in insulated ceiling without attic above, exterior surface of fixture insulated to ≥ R-10 in CZ 4-8.

4.3 Above-grade sill plates adjacent to conditioned space sealed to foundation or sub-floor. Gasket also placed beneath above-grade sill plate if resting atop concrete / masonry & adjacent to cond.

4.4 - Continuous top plate or blocking is at top of walls adjoining unconditioned space, and sealed.

4.5 - Drywall sealed to top plate at all unconditioned attic / wall interfaces using caulk, foam, drywall adhesive (but not other construction adhesives), or equivalent material. Either apply sealant directly between drywall and top plate or to the seam between the two from the attic above.

4.6 - Rough opening around windows & exterior doors sealed.

4.7 - Walls that separate attached garages from occupiable space sealed and, also, an air barrier installed and sealed at floor cavities aligned with these walls.

4.8 - In multifamily buildings, the gap between the common wall (e.g. the drywall shaft wall) and the structural framing between units sealed at all exterior boundaries.

4.9 - Doors adjacent to unconditioned space (e.g., attics, garages, basements) or ambient conditions made substantially air-tight with weatherstripping or equivalent gasket.
4.10 Attic access panels, drop-down stairs, & whole-house fans equipped with durable ≥ R-10 cover that is gasketed (i.e., not caulked). Fan covers either installed on house side or mechanically operated. ☑ ☑ ☑ ☑
6. Duct Quality Installation

** Applies to Heating, Cooling, Ventilation, Exhaust, & Pressure Balancing Ducts, Unless Noted in Footnote

<table>
<thead>
<tr>
<th>Location</th>
<th>Continuous Rate</th>
<th>Intermit Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1 Kitchen</td>
<td>Airflow: ≥ 5 ACH, based on kitchen volume</td>
<td>≥ 100 CFM and, if not integrated with range, also ≥ 5 ACH based on kitchen volume</td>
</tr>
<tr>
<td></td>
<td>Sound: Recommended: ≤ 1 sone</td>
<td>Recommended: ≤ 3 sones</td>
</tr>
<tr>
<td>8.2 Bathroom</td>
<td>Airflow: ≥ 20 CFM</td>
<td>≥ 50 CFM</td>
</tr>
<tr>
<td></td>
<td>Sound: Required: ≤ 1 sone</td>
<td>Recommended: ≤ 3 sones</td>
</tr>
</tbody>
</table>

7. Whole-House Mechanical Ventilation System

<table>
<thead>
<tr>
<th>Path A</th>
<th>Path B</th>
</tr>
</thead>
<tbody>
<tr>
<td>5a.1 Blower fan volumetric airflow is Grade I or II per ANSI / RESNET / ACCA Std. 310.</td>
<td>5b.1 HVAC manufacturer & model number on installed equipment matches either of the following (check box): National HVAC Design Report (4.3, 4.4, & 4.17) or Written approval received from designer</td>
</tr>
<tr>
<td>5a.2 Blower fan watt draw is Grade I or II per ANSI / RESNET / ACCA Std. 310.</td>
<td>Return-Side External Static Pressure: IWC Supply-Side External Static Pressure: IWC</td>
</tr>
<tr>
<td>5a.3 Refrigerant charge is Grade I per ANSI / RESNET / ACCA Std. 310.</td>
<td>5b.3 Permitted, but not required: National HVAC Commissioning Checklist collected, with no items left blank.</td>
</tr>
</tbody>
</table>

8. Local Mechanical Exhaust

- In each kitchen and bathroom, a system is installed that exhausts directly to the outdoors and meets one of the following Rater-measured airflow and manufacturer-rated sound level standards: 4548, 4649, 5248, 5349.

9. Filtration

9.1 At least one MERV 6+ or higher filter(s) installed in each ducted mechanical system, in a located town that

9.2 Filter access panel includes gasket or comparable sealing mechanism and fits snugly against the exposed edge of

9.3 All return air and mechanically supplied outdoor air passes through filter prior to conditioning.

10. Combustion Appliances

10.1 Furnaces, boilers, and water heaters located within the home’s pressure boundary are mechanically drafted or

10.2 Fireplaces located within the home’s pressure boundary are mechanically drafted or direct-vented. Alternatives in

10.3 If unvented combustion appliances other than cooking ranges or ovens are located inside the home’s pressure boundary, the Rater has followed Section 802 of RESNET’s Standards, encompassing ANSI/ACCA 12 QH-2014, Appendix A, Section A3 (Carbon Monoxide Test), and verified the equipment meets the limits defined within 5955.
Rater Name: ________________________ Rater Pre-Drywall Inspection Date: __________ Rater Initials: __________
Rater Name: ________________________ Rater Final Inspection Date: __________ Rater Initials: __________
Builder Employee: ____________________, Builder Inspection Date: __________ Builder Initials: __________
Footnotes

1. At the discretion of the Rater, the builder may verify up to eight items in Sections 1-4 of this Checklist. When exercised, the builder’s responsibility will be formally acknowledged by the builder signing off on the checklist for the item(s) that they verified. However, if a quality assurance review indicates that items have not been successfully completed, the Rater will be responsible for facilitating corrective action.

2. The term ‘Rater’ refers to the person completing the third-party inspections required for certification. This person shall: a) be a certified Home Energy Rater, Rating Field Inspector, or an equivalent designation as determined by a Verification Oversight Organization such as RESNET; and, b) have attended and successfully completed an EPA-recognized training class. See energystar.gov/newhometraining. The term ‘Rater’ refers to the person(s) completing the third-party verification required for certification. The person(s) shall: a) be a Certified Rater, Approved Inspector, or an equivalent designation as determined by a Verification Oversight Organization such as RESNET; and, b) have attended and successfully completed an EPA-recognized training class. See www.energystar.gov/newhometraining.

3. The column titled “N/A,” which denotes items that are “not applicable,” should be used when the checklist Item is not present in the home or conflicts with local requirements.

4. In addition, the infiltration shall not exceed the limits specified in Infiltration shall also meet or exceed specification in Item 3.1.2 of the National Rater Design Review Checklist, if this option has been used to comply with Item 3.1.

5. Two alternatives are provided: a) Grade II cavity insulation is permitted to be used for assemblies that contain a layer of continuous, air impermeable insulation ≥ R-3 in Climate Zones 1 to 4, ≥ R-5 in Climate Zones 5 to 8; b) Grade II batts are permitted to be used in floors if they fill the full width and depth of the floor cavity, even when compression occurs due to excess insulation, as long as the R-value of the batts has been appropriately assessed based on manufacturer guidance and the only defect preventing the insulation from achieving Grade I is the compression caused by the excess insulation.

6. Ensure compliance with this requirement using the version of ANSI / RESNET / ICC Std. 301 including all Addenda and Normative Appendices, new versions and Addenda implemented according to the Effective Date and Transition Period End Date defined by RESNET. RESNET interpretations of Standard 301 shall also be followed utilized by RESNET for HERS ratings.

7. All insulated ceiling surfaces, regardless of slope (e.g., cathedral ceilings, tray ceilings, conditioned attic roof decks, flat ceilings, sloped ceilings), must meet the requirements for ceilings.

8. All insulated vertical surfaces are considered walls (e.g., above and below grade exterior walls, knee walls) and must meet the air barrier requirements for walls. The following exceptions apply: air barriers recommended, but not required, in adiabatic walls in multifamily dwellings; and, in Climate Zones 4 through 8, an air barrier at the interior vertical surface of floor insulation is recommended but not required in basement walls or crawlspace walls. For the purpose of these exceptions, a basement or crawlspace is a space for which ≥ 40% of the total gross wall area is below-grade.

9. Exterior air barriers are not required for attic knee walls that are ≤ 24 in. in height if an interior air barrier is provided and insulation extends in all directions from the top of this interior air barrier into unconditioned space at the following levels: CZ 1-5: ≥ R-21; CZ 6-8: ≥ R-30.

10. EPA highly recommends, but does not require, an air barrier at the interior vertical surface of floor insulation in Climate Zones 4-8.

11. Examples of supports necessary for permanent contact include staves for batt insulation or netting for blown-in insulation. Alternatively, supports are not required if batts fill the full depth of the floor cavity, even when compression occurs due to excess insulation, as long as the R-value of the batts has been appropriately assessed based on manufacturer guidance and the only defect preventing the insulation from achieving the required installation grade is the compression caused by the excess insulation.

12. Alternatively, an air barrier is permitted to be installed at the exterior horizontal surface of the floor insulation if the insulation is installed in contact with this air barrier, the exterior vertical surfaces of the floor cavity are also insulated, and air barriers are included at the exterior vertical surfaces of this insulation.

13. The minimum designated R-values must be achieved regardless of the trade-offs determined using an equivalent U-factor or UA alternative calculation, with the following exception:

 For homes permitted through 12/31/2012: CZ 1-5: For spaces that provide less than 5.5 in. of clearance, R-15 Grade I insulation is permitted. CZ 6-8: For spaces that provide less than 7.0 in. of clearance, R-21 Grade I insulation is permitted.

14. Homes shall achieve Item 3.1 without exception.

15. Note that if the minimum designated values are used, then higher insulation values may be needed elsewhere to meet Item 1.2. Also, note that these requirements can be met by using any available strategy, such as a raised-heel truss, alternate framing that provides adequate space, and/or high-density insulation.

16. Consistent with the 2009 IECC, slab edge insulation is only required for slab-on-grade floors with a floor surface less than 12 inches below grade. Slab insulation shall extend to the top of the slab to provide a complete thermal break. If the top edge of the insulation is installed between the exterior wall and the edge of the interior slab, it shall be permitted to be cut at a 45-degree angle away from the exterior wall. Alternatively, the thermal break is permitted to be created using ≥ R-3 rigid insulation on top of an existing slab (e.g., in a home undergoing a gut rehabilitation).
17.16. Where an insulated wall separates a garage, patio, porch, or other unconditioned space from the conditioned space of the house, slab insulation shall also be installed at this interface to provide a thermal break between the conditioned and unconditioned slab. Where specific details cannot meet this requirement, partners shall provide the detail to EPA to request an exemption prior to the home’s certification. EPA will compile exempted details and work with industry to develop feasible details for use in future revisions to the program. A list of currently exempted details is available at: energy.gov/sites/prod/files/guide_to_passive_solar_home_design.pdf.

18.17. Mass walls utilized as the thermal mass component of a passive solar design (e.g., a Trombe wall) are exempt from this Item. To be eligible for this exemption, the passive solar design shall be comprised of the following five components: an aperture or collector, an absorber, thermal mass, a distribution system, and a control system. For more information, see:

19.18. Up to 10% of the total exterior wall surface area is exempted from the reduced thermal bridging requirements to accommodate intentional designed details (e.g., architectural details such as thermal fins, wing walls, or masonry fireplaces; structural details, such as steel columns). It shall be apparent to the Rater that the exempted areas are intentional designed details or the exempted area shall be documented in a plan provided by the builder, architect, or engineer. The Rater need not evaluate the necessity of the designed detail to certify the home.

20.19. If used, insulated siding shall be attached directly over a water-resisitive barrier and sheathing. In addition, it shall provide the required R-value as demonstrated through either testing in accordance with ASTM C 1363 or by attaining the required R-value at its minimum thickness. Insulated sheathing rated for water protection can be used as a water resistant barrier if all seams are taped and sealed. If non-insulated structural sheathing is used at corners, the advanced framing details listed in Item 3.4.3 shall be met for those wall sections.

21.20. Steel framing shall meet the reduced thermal bridging requirements by complying with Item 3.4.1 of the Checklist.

22.21. Double-wall framing is defined as any framing method that ensures a continuous layer of insulation covering the studs to at least the R-value required in Item 3.4.1 of the Checklist, such as offset double-stud walls, aligned double-stud walls with continuous insulation between the adjacent stud faces, or single-stud walls with 2x2 or 2x3 cross-framing. In all cases, insulation shall fill the entire wall cavity from the interior to exterior sheathing except at windows, doors and other penetrations.

23.22. All advanced framing details shall be met except where the builder, architect, or engineer provides a framing plan that encompasses the details in question, indicating that structural members are required at these locations and including the rationale for these members (e.g., full-depth solid framing is required at wall corners or interior / exterior wall intersections for shear strength, a full-depth solid header is required above an insulated window to transfer load to jacks studs, additional jack studs are required to support transferred loads, additional cripple studs are required to maintain on-center spacing, or stud spacing must be reduced to support multiple stories in a multistory building). The Rater shall retain a copy of the detail and rationale for their records, but need not evaluate the rationale to certify the home.

24.23. All exterior corners shall be constructed to allow access for the installation of ≥ R-6 insulation that extends to the exterior wall sheathing. Examples of compliance options include standard-density insulation with alternative framing techniques, such as using three studs per corner, or high-density insulation (e.g., spray foam) with standard framing techniques.

25.24. Compliance options include continuous rigid insulation sheathing, SIP headers, other prefabricated insulated headers, single-member or two-member headers with insulation either in between or on one side, or an equivalent assembly. R-value requirement refers to manufacturer’s nominal insulation value.

26.25. Insulation shall run behind interior / exterior wall intersections using ladder blocking, full length 2x6 or 1x6 furring behind the first partition stud, drywall clips, or other equivalent alternative.

27.26. In Climate Zones 6 - 8, a minimum stud spacing of 16 in. o.c. is permitted to be used with 2x6 framing if ≥ R-20.0 wall cavity insulation is achieved. However, all 2x6 framing with stud spacing of 16 in. o.c. in Climate Zones 6 - 8 shall have ≥ R-20.0 wall cavity insulation installed regardless of any framing plan or alternative equivalent total UA calculation.

28.27. Existing sill plates (e.g., in a home undergoing a gut rehabilitation) on the interior side of structural masonry or monolithic walls are exempt from this Item. In addition, other existing sill plates resting atop concrete or masonry and adjacent to conditioned space are permitted, in lieu of using a gasket, to be sealed with caulk, foam, or equivalent material at both the interior seam between the sill plate and the subfloor and the seam between the top of the sill plate and the sheathing.

29.28. In Climate Zones 1 through 3, a continuous stucco cladding system adjacent to sill and bottom plates is permitted to be used in lieu of sealing plates to foundation or sub-floor with caulk, foam, or equivalent material.

30.29. In Climate Zones 1 through 3, a continuous stucco cladding system sealed to windows and doors is permitted to be used in lieu of sealing rough openings with caulk or foam.

31.30. Examples of durable covers include, but are not limited to, pre-fabricated covers with integral insulation, rigid foam adhered to cover with adhesive, or batt insulation mechanically fastened to the cover (e.g., using bolts, metal wire, or metal strapping).

32. Path A – HVAC Grading shall not be used until an Effective Date has been defined by RESNET for ANSI / RESNET / ACCA Std. 310. Path A – HVAC Grading shall then use ANSI / RESNET / ACCA Std. 310 including all Addenda and Normative Appendices, with new versions and
Addenda implemented according to the Effective Date and Transition Period End Date defined by RESNET. RESNET interpretations of Standard 301 shall also be followed. For Part A, all unitary HVAC Systems including air conditioners and heat pumps up to 65 kBTU/h shall comply with 5a.1 through 5a.3 for the home to be certified.

33. If the non-invasive procedure in ANSI / RESNET / ACCA Std. 310 is not permitted to be used during the final inspection of a home (i.e., due to the equipment type or to outdoor air temperatures that do not meet the requirements of the non-invasive method), then the home is permitted to be certified with a default refrigerant charge designation of Grade III. Note that in these circumstances, the weigh-in method procedure in ANSI / RESNET / ACCA Std. 310 may still be used to pursue a Grade I designation.

34. If installed equipment does not match the National HVAC Design Report, then prior to certification the Rater shall obtain written approval from the designer (e.g., email, updated National HVAC Design Report) confirming that the installed equipment meets the requirements of the National HVAC Design Report. In addition, if “N/A” was selected for Item 1.2 of the National Rater Design Review Checklist, then the Rater shall verify that all installed equipment is an exempted type per Footnote 9 of that Checklist or, if not an exempted type, shall re-review the National Rater Design Review Checklist to ensure compliance with all requirements (e.g., contractor credential, full completion of HVAC Design Report, HVAC design tolerances).

In cases where the condenser unit is installed after the time of inspection by the Rater, the HVAC manufacturer and model numbers on installed equipment can be documented through the use of photographs provided by the HVAC Contractor after installation is complete.

34.35. The Rater shall measure and record the external static pressure in the return-side and supply-side of the system using the contractor-provided test locations. However, at this time, the Rater need not assess whether these values are within a specific range to certify the home.

35.36. Kinks are to be avoided and are caused when ducts are bent across sharp corners such as framing members. Sharp bends are to be avoided and occur when the radius of the turn in the duct is less than one duct diameter. Compression is to be avoided and occurs when flexible ducts are bent in cavities smaller than the outer duct diameter and ducts in conditioned space are installed in cavities smaller than inner duct diameter. Ducts shall not include coils or loops except to the extent needed for acoustical control.

36.37. Item 6.2 does not apply to ventilation or exhaust ventilation ducts, exhaust ducts, or non-ducted systems. For an HVAC system with a multi-speed fan, the highest design fan speed shall be used when verifying this requirement. When verifying this requirement, doors separating bedrooms from the main body of the house (e.g., a door between a bedroom and a hallway) shall be closed and doors to rooms that can only be entered from the bedroom (e.g., a closet, a bathroom) shall be open. As an alternative to the ± 3 Pa limit, a Rater-measured pressure differential ≥ -5 Pa and ≤ +5 Pa is permitted to be used for bedrooms with a design airflow ≥ 150 CFM. The Rater-measured pressure shall be rounded to the nearest whole number to assess compliance.

37.38. Item 6.3 does not apply to ducts that are a part of local mechanical exhaust and exhaust-only whole-house ventilation systems. EPA recommends, but does not require, that all metal ductwork not encompassed by Section 6 (e.g., exhaust ducts, duct boots, ducts in conditioned space) also be insulated and that insulation be sealed to duct boots to prevent condensation.

38.39. Items 6.4 and 6.5 only apply to heating, cooling, and balanced ventilation ducts. Duct leakage shall be determined and documented by a Rater using the same version of ANSI / RESNET / ICC Std. 380 including all Addenda and Normative Appendices, with new versions and Addenda implemented according to the Effective Date and Transition Period End Date defined by RESNET. RESNET interpretations of Standard 380 shall also be followed that is utilized by RESNET for HERS ratings. Leakage limits shall be assessed on a per-system, rather than per-home, basis. For balanced ventilation ducts that are not connected to space heating or cooling systems, a Rater is permitted to visually verify, in lieu of duct leakage testing, that all seams and connections are sealed with mastic or metal tape and all duct boots are sealed to floor, wall, or ceiling using caulk, foam, or mastic tape.

39.40. For a duct system with three or more returns, the total Rater-measured duct leakage is permitted to be the greater of ≤ 6 CFM25 per 100 sq. ft. of CFA or ≤ 60 CFM25 at ‘rough-in’ or the greater of ≤ 12 CFM25 per 100 sq. ft. of CFA or ≤ 120 CFM25 at ‘final’.

41. Note that compliance with Item 6.4.1 or 6.4.2 in conjunction with Section 4a of the National Rater Design Review Checklist automatically achieves Grade I total duct leakage per ANSI / RESNET / ACCA Std. 310.

40. For a home certified in the State of ID, MT, OR, or WA that is permitted before 01/01/2013, as an alternate to Rater-verified duct leakage, a PTCS® Duct Sealing Certification Form is permitted to be collected by the Home Energy Rater.

41.42. Cabinets (e.g., kitchen, bath, multimedia) or ducts that connect duct boots to toe-kick registers are not required to be in place during the ‘rough-in’ test. For homes permitted through 12/31/2013: Homes are permitted to be certified if rough-in leakage is ≤ 6 CFM25 per 100 sq. ft. of CFA or ≤ 60 CFM25, with air handler & all ducts, building cavities used as ductwork, & duct boots installed.

42.43. Registers atop carpets are permitted to be removed and the face of the duct boot temporarily sealed during testing. In such cases, the Rater shall visually verify that the boot has been durably sealed to the subfloor (e.g., using duct mastic or caulk) to prevent leakage during normal operation.

43.44. Testing of duct leakage to the outdoors can be waived in accordance with the 2nd or 3rd alternative of ANSI / RESNET / ICC Std. 301, Table 4.2.2 (1), footnote (w). Alternatively, testing of duct leakage to outdoors can be waived in accordance with Section 5.5.2 of ANSI / RESNET / ICC Std. 380 if total duct leakage, at rough-in or final, is ≤ 4 CFM25 per 100 sq. ft. of conditioned floor area or 40 CFM25, whichever is larger. Guidance to assist partners with these alternatives, including modeling inputs is available at www.energystar.gov/newhomesguidance. Testing of duct leakage to the outside can be waived if all ducts & air handling equipment are located within the home’s air and thermal barriers AND infiltration does not exceed the following: CZ 1-2: 3 ACH50; CZ 3-4: 2.5 ACH50; CZ 5-7: 2 ACH50; CZ 8: 1.5 ACH50. Alternatively, testing of duct leakage to the outside can be waived if total duct leakage is ≤ 4 CFM25 per 100 sq. ft. or 40 CFM25, whichever is larger.

44.45. The whole-house ventilation air flow and local exhaust air flows shall be determined and documented by a Rater using the same version of ANSI / RESNET / ICC Std. 380 including all Addenda and Normative Appendices, with new versions and Addenda implemented according to the Effective Date and Transition Period End Date defined by RESNET. RESNET interpretations of Standard 380 shall also be followed that is utilized by RESNET for HERS ratings.
45.46. For an attached dwelling unit, excluding units in dwellings (i.e., duplex) and townhomes in a multi-family dwelling unit, the override control is not required to be readily accessible to the occupant. However, in such cases, EPA recommends but does not require that the control be readily accessible to others (e.g., building maintenance staff) in lieu of the occupant.

46.47. Whole-house mechanical ventilation fans shall be rated for sound at no less than the airflow rate in Item 2.3 of the National HVAC Design Report. Fans exempted from this requirement include HVAC air handler fans, remote-mounted fans, and intermittent fans rated ≥ 400 CFM. To be considered for this exemption, a remote-mounted fan must be mounted outside the habitable spaces, bathrooms, toilets, and hallways and there shall be ≥ 4 ft. ductwork between the fan and intake grill. Per ASHRAE 62.2-2010, habitable spaces are intended for continual human occupancy; such space generally includes areas used for living, sleeping, dining, and cooking but does not generally include bathrooms, toilets, hallways, storage areas, closets, or utility rooms.

47.48. Bathrooms fans with a rated flow rate ≥ 500 CFM are exempted from the requirement to be ENERGY STAR certified.

48.49. Ventilation air inlets that are only visible via rooftop access are exempted from Item 7.7 and the Rater shall mark “n/a”. The outlet and inlet of balanced ventilation systems shall meet these spacing requirements unless manufacturer instructions indicate that a smaller distance may be used. However, if this occurs the manufacturer’s instructions shall be collected for documentation purposes.

49.50. Without proper maintenance, ventilation air inlet screens often become filled with debris. Therefore, EPA recommends, but does not require, that these ventilation air inlets be located so as to facilitate access and regular service by the occupant.

50.51. Known contamination sources include, but are not limited to, stacks, vents, exhausts, and vehicles.

52.53. An intermittent mechanical exhaust system, where provided, shall be designed to operate as needed by the occupant. Control devices shall not impede occupant control in intermittent systems.

54.55. Kitchen shall be determined by drawing the smallest possible rectangle on the floor plan that encompasses all cabinets, pantries, islands, peninsulas, ranges / ovens, and the kitchen exhaust fan, and multiplying by the average ceiling height for this area. In addition, the continuous kitchen exhaust rate shall be ≥ 25 CFM, per 2009 IRC Table M1507.3, regardless of the rate calculated using the kitchen volume. Cabinet volume shall be included in the kitchen volume.

53. For homes permitted through 01/01/2014: Homes are permitted to be certified without enforcement of this Item to provide partners with additional time to integrate this feature into their homes.

54.55. For homes permitted on or after 01/01/2014: Homes shall meet this Item. Alternatively, the prescriptive duct sizing requirements in Table 5.3 of ASHRAE 62.2-2010 / 2013 / 2016 are permitted to be used for kitchen exhaust fans based upon the rated airflow of the fan at 0.25 IWC. If the rated airflow is unknown, ≥ 6 in. smooth duct shall be used, with a rectangular to round duct transition as needed. Guidance to assist partners with these alternatives is available at energystar.gov/newhomesguidance. As an alternative to Item 8.1, homes are permitted to use a continuous kitchen exhaust rate of 25 CFM per 2009 IRC Table M1507.3, if they are either a) PHIIUS+ or PHII certified, or b) provide both whole-house ventilation and local mechanical kitchen exhaust using a balanced system, and have a Rater-verified whole-building infiltration rate ≤ 0.05 CFM/sq ft of Enclosure Area, and a Rater-verified dwelling unit compartmentalization rate ≤ 0.30 CFM/sq ft of Enclosure Area if multiple dwelling units are present in the building. ‘Enclosure Area’ is defined as the area of the surfaces that bound the volume being pressurized / depressurized during the test.

55.56. All intermittent kitchen exhaust fans must be capable of exhausting at least 100 CFM. In addition, if the fan is not part of a vented range hood or appliance-range hood combination (i.e., if the fan is not integrated with the range), then it must also be capable of exhausting ≥ 5 ACH, based on the kitchen volume.

56.57. Based upon ASHRAE 62.2:2010, ducted mechanical systems are those that supply air to an occupiable space with a total amount of supply ductwork exceeding 10 ft. in length and through a thermal conditioning component, except for evaporative coolers. Systems that do not meet this definition are exempt from this requirement. While filters are recommended for mini-split systems, HRV’s and ERV’s, these systems, ducted or not, typically do not have MERV-rated filters available for use and are, therefore, also exempted under this version of the requirements. HVAC filters located in the attic shall be considered accessible to the occupant if either 1) drop-down stairs provide access to attic and a permanently installed walkway has been provided between the attic access location and the filter or 2) the filter location enables arm-length access from a portable ladder without the need to step into the attic and the ceiling height where access is provided is ≤ 12 ft.

57.58. Sealing mechanisms comparable to a gasket are also permitted to be used. The filter media box (i.e., the component in the HVAC system that houses the filter) may be either site-fabricated by the installer or pre-fabricated by the manufacturer to meet this requirement. These requirements only apply when the filter is installed in a filter media box located in the HVAC system, not when the filter is installed flush with the return grill.

58.59. The pressure boundary is the primary enclosure boundary separating indoor and outdoor air. For example, a volume that has more leakage to outside than to conditioned space would be outside the pressure boundary.

59.60. Per the 2009 International Mechanical Code, a direct-vent appliance is one that is constructed and installed so that all air for combustion is derived from the outdoor atmosphere and all flue gases are discharged to the outside atmosphere; a mechanical draft system is a venting system designed to remove flue or vent gases by mechanical means consisting of an induced draft portion under non-positive static pressure or a forced draft portion under positive static pressure; and a natural draft system is a venting system designed to remove flue or vent gases under nonpositive static vent pressure entirely by natural draft.

60.61. This item only applies to furnaces, boilers, and water heaters located within the home’s pressure boundary. Naturally drafted equipment is allowed within the home’s pressure boundary in Climate Zones 1-3 if the Rater has followed Section 802 of RESNET’s Standards, encompassing...
This item only applies to fireplaces located within the home’s pressure boundary. Naturally drafted fireplaces are allowed within the home’s pressure boundary if the Rater has verified that the total net rated exhaust flow of the two largest exhaust fans (excluding summer cooling fans) is ≤ 15 CFM per 100 sq. ft. of occupiable space when at full capacity. If the net exhaust flow exceeds the allowable limit, it shall be reduced or compensating outdoor airflow provided. Per ASHRAE 62.2-2010, the term “net rated exhaust flow” is defined as flow through an exhaust fan minus the compensating outdoor airflow through any supply fan that is interlocked to the exhaust fan. Per ASHRAE 62.2-2010, the term “occupiable space” is defined as any enclosed space inside the pressure boundary and intended for human activities, including, but not limited to, all habitable spaces, toilets, closets, halls, storage and utility areas, and laundry areas. See Footnote 4744 for the definition of “habitable spaces”.

The minimum volume of combustion air required for safe operation by the manufacturer and/or code shall be met or exceeded. Also, in accordance with the National Fuel Gas Code, ANSI Z223.1 / NFPA54, unvented room heaters shall not be installed in bathrooms or bedrooms.