Energy Star Lighting Partners Meeting
Lighting Technology Updates

Metal Halide: The “Other” White Light

Jay Busch - LC, LEED-AP, Commercial Engineer

On behalf of the NEMA Lamp Section

October 5, 2010
Metal Halide Lamps

- Invented over 50 years ago (first U.S. patent, 1961)
- Since then, MH lamps have evolved into the most energy efficient white light sources available in the market today, due to advances in
 - Physics
 - Chemistry
 - Materials Science
 - Electronics
 - Engineering
What Is It?

- MH lamps have either a quartz or ceramic (polycrystalline alumina) arc tube
 - Ceramic arc tubes allow higher operating temperatures and still achieve high efficacy, lumen maintenance and color stability
 - Quartz arc tubes used widely based on cost
Main Advantages: Summary

- High efficacy
- Long lifetimes
- High maintained light levels
- Color temperatures and CRI
- Broad operating temperature range
- High luminance, optical efficiency
- Ballast compatibility
- Dimmable
High Efficacy

- MH lamps are the most efficient way to make white light commercially available today.

- Recent technology advances with medium wattage ceramic MH enable
 - > 20,000 hrs rated life
 - CRI ≥ 90
 - Luminous efficacies of 120 LPW
Long Lifetimes

- Proven lifetimes in excess of 20,000 hours

- Latest generation of electrodeless HID systems claim lifetimes in excess of 30,000 hours
High Maintained Light Levels

- Lumen maintenance was once a weak point of MH systems, but no longer

- Lumen maintenance now approaches 90% with pulse start lamps and electronic ballasts
Color Temperatures and Color Rendering

- MH systems available in wide range of
 - CCTs (1800 to 10,000 K)
 - Lumen packages (1200 to 200,000 lm)
 - Color rendering indices (up to 98)
 - Red rendering index (R9) available with values >50 in latest ceramic lamps
Operating Temperature Range

Operating characteristics of MH lamps

- Independent of ambient temperature
- Robust to extreme temperatures (contrast with fluorescent and LED)
- Allow for numerous applications
 - Outdoor and street
 - Studio and stage
 - Architectural
 - Office, hospitality and retail
 - High-bay
 - Sports
Luminance & Optical Efficiency

<table>
<thead>
<tr>
<th>Source</th>
<th>Approx. luminance (cd/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sun</td>
<td>10^9</td>
</tr>
<tr>
<td>HID (e.g. MH)</td>
<td>10^6 to 10^9</td>
</tr>
<tr>
<td>High brightness LED</td>
<td>10^7</td>
</tr>
<tr>
<td>60W incandescent</td>
<td>10^5</td>
</tr>
<tr>
<td>T8 fluorescent</td>
<td>10^4</td>
</tr>
<tr>
<td>OLED</td>
<td>10^2</td>
</tr>
</tbody>
</table>
Luminance & Optical Efficiency

- Where high lumens required, MH lamps are smaller and lighter than current SSL systems
- Ceramic MH arc lengths up to 5x shorter than HPS and 2-3X shorter than quartz MH
 - Can drive more efficient fixture designs with better beam control, cut-off, dark sky capability and less glare
- MH lamps suitable for luminaires that collect and direct visible light for illumination at a distance, more of a point source than an array
 - From one meter to hundreds of meters
Ballast Compatibility & Dimmability

- MH lamps operate on wide range of commercially available magnetic and electronic ballast systems
 - Electronic ballasts up to 95% efficiency
 - Magnetic ballasts range from 75% to 92% efficiency

- Magnetic and electronic ballasts dim most MH lamps by as much as 50% of rated lamp power in all operating positions
Summary Characteristics

<table>
<thead>
<tr>
<th></th>
<th>Quartz Metal Halide</th>
<th>Ceramic Metal Halide</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typical Wattage Range</td>
<td>20-2,000</td>
<td>15-400</td>
</tr>
<tr>
<td>Efficacy (LPW)</td>
<td>68-120</td>
<td>80-120</td>
</tr>
<tr>
<td>CCT (degrees K)</td>
<td>2,700-10,000</td>
<td>2,700-5,500</td>
</tr>
<tr>
<td>Lifetime (hours)</td>
<td>6,000-20,000</td>
<td>12,000-30,000</td>
</tr>
<tr>
<td>Lumens</td>
<td>1,600-200,000</td>
<td>1,200-48,000</td>
</tr>
<tr>
<td>CRI</td>
<td>60-95</td>
<td>60-98</td>
</tr>
</tbody>
</table>
Focus Areas of MH R&D

- Efficiency
- Life
- Maintenance
- Controls
- Drivers
- Integrated lamp-ballast systems
- Miniaturization
- Environmental sustainability
- Electrodeless

Greatest advances will be achieved when a systems approach is used – lamps, ballasts, controls, and luminaires developed and optimized together.
Conclusions

- Good now and better soon (over next 5 years)
 - ≥ 150 LPW (with 90% lumen maintenance and 30,000+ hr rated lifetimes) commercially available in wide wattage range, from < 20 W to > 1000 W

- Most HID lamps are researched, developed and manufactured in the U.S.

- Government support for lighting R&D should be technology neutral.
 - MH and LEDs both have great potential
 - Both MH and LEDs will reduce US energy consumption and minimize lighting environmental impacts

- Energy Star eligibility