LED Lighting Standards in ENERGY STAR® Programs

Jianzhong Jiao, Ph.D.
OSRAM Opto Semiconductors Inc.
Outline

- Introduction
- LED lighting standards referred to or referenced in ENERGY STAR® Specs
 - ANSI
 - IESNA
 - UL
 - NEMA
- Implementations of LED lighting standards in ENERGY STAR® Programs
 - Testing for qualifications
 - Considerations of new standards
LED Lighting Standardization Bodies in USA

- Professional associations
 - SAE (Society of Automotive Engineers)
 - IESNA (Illumination Engineering Society North America)
 - IEEE-SA (Institute of Electrical and Electronics Engineers Standards Association)

- Standard organizations
 - UL (Underwriter Laboratories)
 - ANSI (American National Standard Institute)

- Trade associations
 - NEMA (National Electrical Manufacturers Association)
 - JEDEC (Joint Electron Device Engineering Council)
 - SEMI (Semiconductor Equipment and Materials International)
Government Regulations or Specifications for LED Lighting

- Federal government: DOT, EPA, DOE, …
 - Rule making (establish rules by federal agencies)
 - Enforcement
 - “Endorsement”, approval, labeling

- Federal government: DOC
 - National Institute of Standards and Technology (NIST): US National Metrology Institute
 - Promote US innovation and industrial competitiveness by advancing measurement science, standards, and technology

- Local government (states, authority having jurisdiction, or AHJ)
 - State vehicle codes, building codes, etc.

- Government rules and specs often refer to or reference industry’s standards
Introduction

Purposes of LED & SSL Standards

- **Safety**
 - Ensure LED product safety: tests, requirements, and certifications

- **Testing**
 - Describe consistent methods to test LED and SSL products

- **Performance**
 - Define performance related characteristics

- **US governmental programs specifications**
 - ENERGY STAR®: Qualify products for energy saving and consumer protection
 - Consortiums: DLC, CBEA, MSSLC, etc to specify energy saving and products performance requirements
 - State: (CA, MA, etc.) Regulate energy saving products
 - AHJ: Ensure public safety or environment protection
Introduction

ENERGY STAR®

- Program Requirements
Product Specification for Luminaires (Light Fixtures)
V1.1
Introduction

ENERGY STAR®

- Requirements for Integral LED Lamps Eligibility Criteria V1.4
- Program Requirements Product Specification for Lamps (Light Bulbs) Eligibility Criteria V1.0, DRAFT 1

Methods of Measurement and Reference Documents

<table>
<thead>
<tr>
<th>Organization</th>
<th>Identifier</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANSI/ESKF</td>
<td>C62.31-2002</td>
<td>IPFP Recommended Practice on Characterization of Surges in Low Voltage (1000V and Less) AC Power Circuits</td>
</tr>
<tr>
<td>ANSI</td>
<td>C78.50-2003</td>
<td>Electric Lamps—A, G, PS and Similar Shapes with E26 Medium Screw Bases</td>
</tr>
<tr>
<td>ANSI</td>
<td>C78.21-2003</td>
<td>Electric Lamps—PAR and R Shapes</td>
</tr>
<tr>
<td>ANSI</td>
<td>C78.23-1994 (R2003)</td>
<td>Incandescent Lamps—Miscellaneous Types</td>
</tr>
<tr>
<td>ANSI</td>
<td>C78.372-1997</td>
<td>Fluorescent Lamps—Guide for Electrical Measurements</td>
</tr>
<tr>
<td>ANSI</td>
<td>C78.376-2001</td>
<td>Specifications for the Chromaticity of Fluorescent Lamps</td>
</tr>
<tr>
<td>ANSI/NEMA/ANSILG</td>
<td>C78.377-2002</td>
<td>Specifications for the Chromaticity of Solid State Lighting Products</td>
</tr>
<tr>
<td>ANSI</td>
<td>C78.350-2001</td>
<td>Electric Lamps—High Intensity Discharge (HID) Methods of Measuring Characteristics</td>
</tr>
<tr>
<td>ANSI</td>
<td>C78.352-2002</td>
<td>Specifications for Performance of Self-ballasted Compact Fluorescent Lamps</td>
</tr>
<tr>
<td>ANSI/ANSILG</td>
<td>C611-2009</td>
<td>Specifications for Bases (Caps) for Electric Lamps</td>
</tr>
<tr>
<td>ANSI</td>
<td>C62.77-2000</td>
<td>Harmonic Emission Limits—Related Power Quality Requirements for Lighting Equipment</td>
</tr>
<tr>
<td>ANSIIES</td>
<td>RP-16-10</td>
<td>Nomenclature and Definitions for Illuminating Engineering</td>
</tr>
<tr>
<td>CIE</td>
<td>Pub. No. 15.3-1990</td>
<td>Method of Measuring and Specifying Color Rendering of Light Sources</td>
</tr>
<tr>
<td>CIE</td>
<td>Pub. No. 15.1-2004</td>
<td>Colorimetry</td>
</tr>
<tr>
<td>FCC</td>
<td>CFR Title 47 Part 2</td>
<td>Frequency Allocations and Radio Treaty Matters; General Rules and Regulations</td>
</tr>
<tr>
<td>FCC</td>
<td>CFR Title 47 Part 16</td>
<td>Radio Frequency Devices</td>
</tr>
<tr>
<td>FCC</td>
<td>CFR Title 47 Part 18</td>
<td>Industrial, Scientific, and Medical Equipment</td>
</tr>
<tr>
<td>IEC</td>
<td>0923-1 Ed. 1.0</td>
<td>Electrotechnical Products—Determination Of Levels Of Six Regulated Substances (lead, mercury, cadmium, hexavalent chromium, polybrominated biphenyl, polybrominated dibenzo-p-dioxins)</td>
</tr>
<tr>
<td>IEC</td>
<td>LM3-05</td>
<td>Electrical and Photometric Measurements of Fluorescent Lamps</td>
</tr>
<tr>
<td>IES</td>
<td>LM17-11</td>
<td>Life Testing of High Intensity Discharge (HID) Lamps (renewal anticipated in 2011)</td>
</tr>
<tr>
<td>IES</td>
<td>LM31-00</td>
<td>Electrical and Photometric Measurements of High Intensity Discharge Lamps</td>
</tr>
<tr>
<td>IES</td>
<td>LM35-11</td>
<td>Guide to Spectroradiometric Measurements (renewal anticipated in 2011)</td>
</tr>
<tr>
<td>IES</td>
<td>LM35-10</td>
<td>Life Testing of Compact Fluorescent Lamps</td>
</tr>
<tr>
<td>IES</td>
<td>LM38-14</td>
<td>Electrical and Photometric Measurements of Single-Ended Compact fluorescent Lamps</td>
</tr>
<tr>
<td>IES</td>
<td>LM39-05</td>
<td>Electrical and Photometric Measurements of Solid-State Lighting Products</td>
</tr>
<tr>
<td>IES</td>
<td>LM39-06</td>
<td>Measuring Lumen Maintenance of LED Light Sources</td>
</tr>
<tr>
<td>IES</td>
<td>LM21-11</td>
<td>Projecting Long Term Lumen Maintenance of LED Light Sources</td>
</tr>
</tbody>
</table>
Outline

- Introduction
- LED lighting standards referred to or referenced in ENERGY STAR® Specs
 - ANSI
 - IESNA
 - UL
 - NEMA
- Implementations of LED lighting standards in ENERGY STAR® Programs
 - Testing for qualifications
 - Considerations of new standards
Industry’s Standards for LED Lighting

ANSI Standard: ANSI/IES RP-16-10

- **Purpose**
 - To establish definitions for solid-state lighting devices and their components to ensure a common understanding of the terminology

- **Status**
 - Published
 - Continuous revisions

- **Commonly used terminologies**
 - LED package
 - LED array or module
 - LED driver, and LED driver class II
 - LED lamp integrated, and non-integrated
 - LED light engine
 - LED luminaire
Industry’s Standards for LED Lighting

Example of Definition

- **LED Die**
 - A small block of light-emitting semi-conducting material on which a functional LED circuit is fabricated

- **LED Package**
 - An assembly of one or more LED dies that includes wire bond or other type of electrical connections, possibly with an optical element and thermal, mechanical, and electrical interfaces. Power source and ANSI standardized base are not incorporated into the device. The device cannot be connected directly to the branch circuit.
Industry’s Standards for LED Lighting

Example of Definition (cont.)

- **LED Array or Module**
 - An assembly of LED packages (components), or dies on a printed circuit board or substrate, possibly with optical elements and additional thermal, mechanical, and electrical interfaces that are intended to connect to the load side of a LED driver. Power source and ANSI standard base are not incorporated into the device. The device cannot be connected directly to the branch circuit.

- **LED Driver**
 - A device comprised of a power source and LED control circuitry designed to operate a LED package (component), or an LED array (module) or an LED lamp.
Example of Definition (cont.)

- **LED Lamp – Integrated**
 - An integrated assembly comprised of LED packages (components) or LED arrays (modules), LED driver, ANSI standard base and other optical, thermal, mechanical and electrical components. The device is intended to connect directly to the branch circuit through a corresponding ANSI standard lamp-holder.

- **LED Light Engine**
 - An integrated assembly comprised of LED packages (components) or LED arrays (modules), LED driver, and other optical, thermal, mechanical and electrical components. The device is intended to connect directly to the branch circuit through a custom connector compatible with the LED luminaire for which it was designed and does not use an ANSI standard base.
Industry’s Standards for LED Lighting

ANSI Standard: ANSI C78.377

- **Purpose**
 - To communicate the indoor lighting SSL products color characteristics to SSL producers and users

- **Status**
 - Published
 - Revision in process

- **Clarification**
 - Lighting products outside of “color zone” ≠ poor color quality
 - Lighting products meeting this standard ≠ color consistency
 - The standard does not reflect users visual preference, acceptability, and adoptability for white color
 - ANSI standard is not the same as for the Energy Star requirements
Industry’s Standards for LED Lighting

Nominal CCT Categories

- Nominal CCT: white light chromaticity information of a product
- Requirements
 - 8 fixed or selected CCTs, or
 - Flexible CCTs with 100 K step
Chromaticity Tolerances

- Quadrangles
 - In both ΔCCT and Duv directions
 - Approximately equal to 7-step MacAdam ellipses

<table>
<thead>
<tr>
<th>Nominal CCT 1</th>
<th>Target CCT and tolerance (K)</th>
<th>Target Duv and tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>2700 K</td>
<td>2725 ± 145</td>
<td>0.000 ± 0.006</td>
</tr>
<tr>
<td>3000 K</td>
<td>3045 ± 175</td>
<td>0.000 ± 0.006</td>
</tr>
<tr>
<td>3500 K</td>
<td>3465 ± 245</td>
<td>0.000 ± 0.006</td>
</tr>
<tr>
<td>4000 K</td>
<td>3985 ± 275</td>
<td>0.001 ± 0.006</td>
</tr>
<tr>
<td>4500 K</td>
<td>4503 ± 243</td>
<td>0.001 ± 0.006</td>
</tr>
<tr>
<td>5000 K</td>
<td>5028 ± 283</td>
<td>0.002 ± 0.006</td>
</tr>
<tr>
<td>5700 K</td>
<td>5665 ± 355</td>
<td>0.002 ± 0.006</td>
</tr>
<tr>
<td>6500 K</td>
<td>6530 ± 510</td>
<td>0.003 ± 0.006</td>
</tr>
<tr>
<td>Flexible CCT (2700 - 6500 K) 2</td>
<td>T^2 ± ΔT^3</td>
<td>D_{uv}^4 ± 0.006</td>
</tr>
</tbody>
</table>

1 Nominal CCT represents the nominal color temperature of the LED.
2 Flexible CCT refers to the range of color temperatures that can be achieved.
3 ΔT represents the tolerance in the color temperature.
4 D_{uv} represents the tolerance in the chromaticity coordinates.
Industry’s Standards for LED Lighting

ANSI Ad hoc: Revision for ANSI C78.377

- Scope of the revision
 - Make tolerance continuous for all nominal (fixed and flexible) CCTs

\[D_{uv}(T_x) \pm 0.006 \]

where

\[D_{uv}(T_x) = 57700 \times (1/T_x)^2 - 44.6 \times (1/T_x) + 0.0085 \]

\(T_x \) : CCT of the source
Industry’s Standards for LED Lighting

ANSI Ad hoc: Revision for ANSI C78.377 (cont.)

- Added Annex for conversions between CCT, \(D_{UV} \) and \((x, y)\) or \((u', v')\).
 - Calculation \(D_{uv} \) from \(x, y \) or \(u', v' \) values

\[
L_{FP} = \sqrt{(u - 0.292)^2 + (v - 0.24)^2}
\]

\[
a = \arccos\left(\frac{u - 0.292}{L_{FP}}\right)
\]

\[
L_{BB} = k_6 a^6 + k_5 a^5 + k_4 a^4 + k_3 a^3 + k_2 a^2 + k_1 a + k_0
\]

\[
D_{uv} = L_{FP} - L_{BB}
\]

- Added Annex to describe 4-step MacAdam ellipse equivalent quadrangles
 - It is for reference for comparison of the requirements used for linear fluorescent lamp (LFL)

Table A5 Coefficients for \(D_{UV} \) calculation

\(k_i \)	\(k_5 \) 0.00616793
	\(k_5 \) 0.0893944
	\(k_4 \) -0.5179722
	\(k_3 \) 1.5317403
	\(k_2 \) -2.4243787
	\(k_1 \) 1.925865
	\(k_0 \) 0.471106

CIE 1931 \((x, y)\) Diagram

EPA Energy Star Products Partner Meeting | Nov. 9, 2011 | 18
Industry’s Standards for LED Lighting

IES Document: IES LM-79-08

- **Purpose**
 - Provide procedures for reproducible measurements of photometry, color and electrical characteristics of SSL products

- **Status**
 - Published
 - Revision in process

- **What can be tested with this standard?**
 - Total luminous flux
 - Luminous intensity
 - Zonal lumen summation
 - CCT (Correlated Color Temperature)
 - CRI (Color Rendering Index)
 - Chromaticity values (x,y and u’,v’)
 - Color spatial uniformity
Industry’s Standards for LED Lighting

Test Requirements

- **Absolute photometry**
 - Luminaire (or other SSL product) is referenced to a calibrated standard lamp
 - No luminous efficiency calculations or comparisons

- **Testing procedures**
 - No seasoning
 - Thermal stabilization
 - Ambient temperature 25°C ± 1°C
 - Use of integrating sphere (2π or 4π setup) with spectroradiometer, or with a photometer head (sphere-photometer system)
 - Use of goniophotometer with photometer head or spectroradiometer

\[\Delta_{15}(t) = \frac{\Phi(t) - \Phi(t - 15)}{\Phi(t)} < 0.005 \]
Industry’s Standards for LED Lighting

LM-79 Test Report

- Report contents
- IES format files
Industry’s Standards for LED Lighting

IES Document: IES LM-80-08

- **Purpose**
 - Provide methods of the measurement of lumen maintenance of LED packages, arrays and modules

- **Status**
 - Published
 - Revision in process

- **Clarification**
 - It does not provide performance requirements
 - It does not provide guidance or make any recommendation regarding predictive estimations or extrapolation for lumen maintenance beyond the limits of the lumen maintenance determined from actual measurements
Industry’s Standards for LED Lighting

Test Requirements

- General
 - Sample marking: individual LED light sources shall be marked and tracked during life testing
 - Sample selection: shall be selected to be sufficiently representative of the overall population being tested

- Photometry test
 - Luminous flux shall be measured at the drive current used during life testing, at ambient temperature 25 °C ± 2 °C
 - The chromaticity shift shall be measured and reported over the course of the life testing

- Test procedure
 - Shall be tested for at least 6,000 hours with data collection at a minimum of every 1,000 hours
 - The case temperatures T_s shall be 55°C, 85°C, with the third temperature selected by the manufacture. The case temperature and drive current selected by the manufacturer should represent their expectation and be within recommended operating temperature range.
Industry’s Standards for LED Lighting

LM-80 Test Report

- Contents to be included
 - Number of LED sources tested
 - Description of LED sources
 - Description of auxiliary equipment
 - Operating cycle
 - Ambient conditions including airflow, temperature and relative humidity
 - Case temperature (test point temperature)
 - Drive current of the LED light source during lifetime test
 - Initial luminous flux and forward voltage at photometric measurement current
 - Lumen maintenance data for each individual LED light source
 - Observation of LED light source failures including the failure conditions and time of failure
 - LED light source monitoring interval
 - Photometric measurement uncertainty
 - Chromaticity shift reported over the measurement time.
Industry’s Standards for LED Lighting

IES Document: IES TM-21-11

- **Purpose**
 - Provide a calculation tool to interpret the data collected from LM-80 testing; to provide users with lumen maintenance life (e.g., \(L_{70} \)) projection, or to predict estimated lumen output values at a given time duration; to interpolate lumen maintenance behaviors for the in-situ temperature (different from testing temperature)

- **Status**
 - Published

- **Clarification**
 - It does not provide performance requirements
 - It does not give the criteria if a product is good or bad
 - It only addresses lumen maintenance, not rated life or reliability of the products
Industry’s Standards for LED Lighting

Sample Size & Test Data

- Sample size recommendation
 - 20 samples to project 6 times of test duration
 - 10 to 19 samples to project 5.5 times test duration

- Luminous flux data collection
 - Additional measurements after the initial 1,000 hours at intervals smaller than 1,000 hours are encouraged. Additional measurements beyond 6,000 hours are encouraged and will provide the basis for more accurate lumen maintenance projections

- Normalization & average
 - Normalize all collected data to a value of 1 (100%) at 0 hours
 - Average the normalized measured data of all samples
Industry’s Standards for LED Lighting

Projection Procedure

- Data used for curve-fit
 - Data before 1,000 hour reading shall not be used
 - For curve fit, use last 5,000 hours of data for test duration \(\leq 6,000 \) hours, or
 - Last 50\% of total test duration for test duration > 10,000 hours
- Curve-fit
 - Perform an exponential least squares fit
 \[\Phi_i(t) = B_0 \exp(-\alpha_i t) \]
 - Use the following equations to project the lumen maintenance life
 \[L_p = \frac{\ln\left(100 \times \frac{B}{p}\right)}{\alpha} \]
- Adjustment of results
 - Luminous flux values must not be projected beyond 6 times of the test duration
 - When calculated \(L_{70} > 0 \) and \(\leq 6 \) times of the test duration, reported \(L_{70} \) is the calculated \(L_{70} \)
 - When calculated \(L_{70} > 0 \) and \(\geq 6 \) times of the test duration, reported \(L_{70} \), is limited to 6X total test duration
 - When calculated \(L_{70} < 0 \), the reported \(L_{70} \), will be 6 times of the test duration, and equal to the normalized lumen output at the last measurement point
Industry’s Standards for LED Lighting

Data Interpolation

- Applicability of the Arrhenius equation
 - Both α_1 and α_2 are positive
- Limit for extrapolation
 - In-situ temperature is within 2 LM-80 tested temperatures

![Graph showing lumen maintenance over time for different temperatures.](image)
Industry’s Standards for LED Lighting

IES Document: IES LM-82-11

- **Purpose**
 - To describe the procedures in performing reproducible measurements of LED light engines and integrated LED lamps, at any given temperature for the performance characteristics (total luminous flux, electrical power, etc.)

- **Status**
 - To be published

- **Clarification**
 - It does not provide performance requirements
 - It does not give the criteria if a product is good or bad
 - It only addresses the lumen output vs. temperature.
Industry’s Standards for LED Lighting

Test Procedures

- **Initial measurement**
 - Measure per LM-79-08 in room temperature condition

- **Calibration**
 - Repeat the measurement for the same unit with the temperature-controlled device in the room temperature condition
 - Establish correction factors between the room temperature LM-79 measurements and measurements with the temperature-controlled device
 - Select spatial point for relative photometry measurements

- **Measuring at the elevated temperatures**
 - Measure the unit (integrating sphere or spatial point) at room temperature + 25°C
 - Measure the unit at room temperature + ΔT °C

Source: Permlight
Industry’s Standards for LED Lighting

LM-82 Test Report

- Content to be included
 - Input power
 - Input voltage
 - Input current
 - Luminous flux
 - Luminous efficacy
 - Chromaticity as optional
 - Correlated color temperature as optional
 - T_d, monitoring pointer temperature
 - Test date
 - Test facility
 - Test instrumentation
 - UUT description
 - Internal procedure reference
Industry’s Standards for LED Lighting

UL Standard: UL8750

- **Purpose**
 - To provide safety requirements for LED equipment that is an integral part of a luminaire or other equipment and which operates in the visible light spectrum between 400 – 700 nm. The requirements also cover the component parts of the light emitting diode (LED) equipment, including LED drivers, controllers, arrays, modules, and packages as defined within this standard

- **Status**
 - Published
 - Continuous revisions

- **Notice**
 - LED light source safety standard that are also referred by other UL lighting standards

EPA Energy Star Products Partner Meeting | Nov. 9, 2011 | 32
Industry’s Standards for LED Lighting

LED Sources Safety

- UL safety concerns
 - Risk of electrical shock injury
 - Risk of fire
- Requirements for risk of electrical shock injury
 - >5 mA and
 - >30 VAC rms or >60 VDC (dry)
 - >15 VAC rms or >30 VDC (wet)
- Requirement for risk of fire
 - Electric energy: power above Class 2
 - Thermal energy: end product temperature test, end product abnormal test

Source: Strategies in Light 2009
Industry’s Standards for LED Lighting

Requirements in UL8750

- **Construction**
 - Environmental considerations
 - Mechanical constructions
 - Electrical constructions

- **Performance**
 - Performance tests
 - Markings

- **LED lens must subject to additional tests for non class II applications**
 - Dielectric voltage withstand test: 500-V potential the LED and the lens surface.
 - Flammability test: V1 test in UL94
 - Impact test: drop test: 09m
 - Probing force: 4.45N
Industry’s Standards for LED Lighting

UL Recognition for LED Packages

- Program framework and objective
 - Create component level recognition
 - Standardize reporting on LED package characteristics (for safety)
 - UL recognized LED packages can be searched from UL certification database

- UL recognized LED packages characteristics based on UL8750
 - Input type
 - Maximum junction temperature
 - Environmental location suitability
 - Enclosure consideration
 - Maximum operating voltage

- Marking
 - Components recognized under UL's Component Recognition Program bear the Recognized Component Mark
Industry’s Standards for LED Lighting

NEMA White Paper: LSD-45

- **Purpose**
 - To make recommendations for Solid State Lighting Sub-Assembly Interfaces for Luminaires
 - Setup guidelines are intended for SSL interconnects which enable the repeated insertion and the withdrawal of components and are intended for use in general lighting
 - Focus on Mechanical, Electrical and Thermal interfaces. Interfaces to both branch circuitry and low voltage sources will be included.

- **Status**
 - Published

- **Notice**
 - Guidelines do not apply to LED retrofit lamps
Industry’s Standards for LED Lighting

NEMA White Paper: LSD-45 (cont.)

- Mechanical interface
 - Dimensions & tolerances
 - Weight
 - Coupling
 - Materials
 - Glass

- Electrical interface
 - Safety
 - Number of electrical connections
 - Type of connections

- Thermal interface
 - Recommended interconnect provisions for the safe operation of LED modules/light engines
 - Recommended interconnect provisions for the proper performance of LED modules/light engines
 - Provisions for luminaires and interconnects for LED modules/light engines
Outline

- Introduction
- LED lighting standards referred to or referenced in ENERGY STAR® Specs
 - ANSI
 - IESNA
 - UL
 - NEMA
- Implementations of LED lighting standards in ENERGY STAR® Programs
 - Testing for qualifications
 - Considerations of new standards
Testing for Qualifications

- **System level tests**
 - Documents: ANSI C78.377, LM-79, LM-82
 - Performance characteristics: photometry and colorimetry
 - Electrical characteristics: for calculation of efficacy
 - Thermal characteristics: lumen output temperature dependency

- **Sub-component level tests**
 - Documents: LM-80, TM-21, UL8750
 - Durability of the performance: light output (lumen and color) changes over time
 - Safety: UL recognized LED packages with conditions of usage
Standards Implementations in ENERGY STAR®

Considerations of New Standards

 - Addresses the methods of measurement of lumen maintenance of LED lamps, light engines and luminaires. Different from LM-80 for testing LED light sources or subcomponents, the standard will provide recommendations for:
 - Temperature setup
 - Operation duty cycle
 - It may not specify testing duration and measurement intervals
Standards Implementations in ENERGY STAR®

Considerations of New Standards (cont.)

- Component level test: new IES LM, IES Approved Method for the Electrical and Photometric Measurements of High-Power LEDs
 - Address the measurements for high-power LEDs that require heat sink for their normal operation, and include white LEDs as well as single color LEDs.
 - Measure total luminous flux, total radiant flux (optical power), electrical power, luminous efficacy, and color characteristics of high-power LEDs
 - Measure under pulse operation as well as steady DC operation of LEDs, and in all cases, the thermal condition of LEDs refers to their junction temperature
 - Applies to laboratory measurements and does not apply to measurements in LED manufacturer’s production control nor relative measurements of LED’s thermal characteristics

Does not cover measurement of ultraviolet LEDs, IR emitters, and AC-driven LEDs.
Standards Implementations in ENERGY STAR®

Considerations of New Standards (cont.)

- Component level test: new IES LM, Measuring Remote Phosphor Systems Characteristics Change Over Time
 - Address the measurements for remote phosphor components in the SSL products for their photometry and colorimetry characteristics change over time
 - Link the phosphor lumen and color maintenance behaviors to the pumping LED die behavior
 - Reduce burden for testing entire SSL products where remote phosphor is used
Component level test: new IES LM, AC LED Measurements
- Measure AC LED packages photometric, colorimetric, and electrical characteristics
- It may cover high voltage LEDs
- Does not cover AC LED modules
Considerations of New Standards (cont.)

- Component level test: new IES TM, Rated Life for LED Sources
 - Clarify the difference between “B_p” life and “L_p” life
 - Develop definition of rated life for LED sources that includes both catastrophic failure and lumen maintenance life
 - Establish methods to project rated life for LED sources
Standards Implementations in ENERGY STAR®

Considerations of New Standards (cont.)

- Flicker issue: IEEE PAR 1789
 - Defining Measures of Flicker
 - Risk Matrix Analysis
 - Flicker Education to Stakeholders and Handling Comments on Flicker Report

- LRC ASSIST work
 - Flicker detections and acceptability
 - Identify flicker parameters: frequency, modulation depth, duty cycle
Summary

- ENERGY STAR®
 - A performance based product specifications
 - Energy saving is essential
 - Product quality and durability is important for users to accept SSL products

- US industry standards for LED lighting
 - Based on industry’s best practice, should be consistent, meaningful, and scientifically sound
 - To ensure measurements are reliable and repeatable
 - To assist new technology implementations
Thank You!

For more information, contact: jianzhong.jiao@osram-os.com