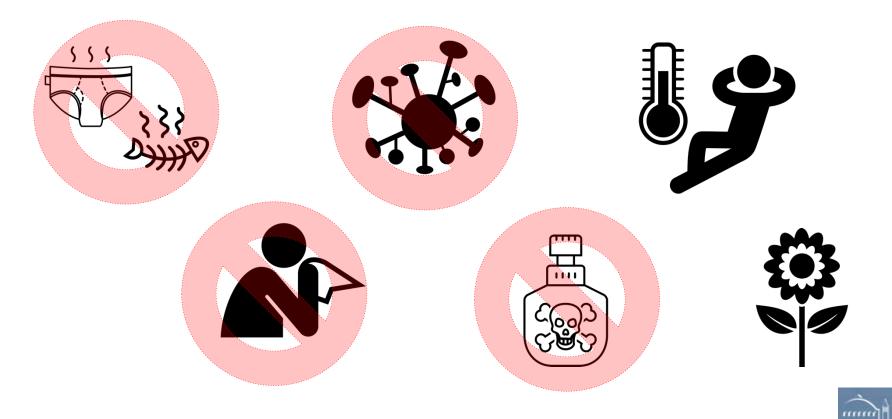
Whole House Ventilation: Better, Stronger, Faster

Brett C. Singer

Lawrence Berkeley National Lab

bcsinger@lbl.gov

ENERGY STAR Certified Homes Stakeholder Meeting Sep 12, 2019 – Charlotte NC



Outline

- Mechanical ventilation (MV) as control for IAQ
- Studies of MV performance
- Smart ventilation studies
- Guidance on ventilation

What is Indoor Air Quality?

	Ventilation reduces	IAQ Cha	IAQ Challenges		
	indoor levels	<u>From Inside</u>	From Outside	indoor levels	
Particulate matter		articulate matter	Particulate matter		
Nitrogen dioxide: NO ₂			Radon		
Water vapor -> Mold			Allergens		
People/pet bioeffluents			Ozone		
Cooking / chemical odors			Nitrogen dioxide: No	02	
Allergens Formaldehyde			Benzene		
			Mold		
		Acrolein	Odors		
		Other VOCs, CO		~ \	
	4	Carbon dioxide?			

BERKELEY LAB

Good IAQ = Low-Risk of Bad IAQ

How to Reduce IAQ Risk

Reduce hazard entry

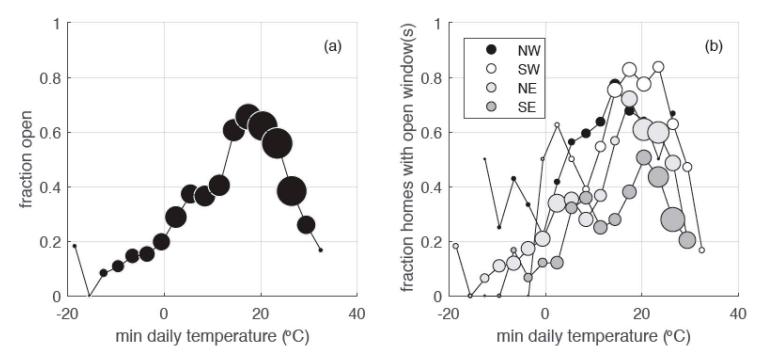
- Airtight envelope and ducts
- Radon-resistant construction
- Low-emitting materials
- Vent combustion & cooking
- Vent kitchen, bath, laundry
- Filter supply air
- Keep it dry
- Increase hazard removal rate
 - General ventilation
 - Filtration

The Builder's Guide to IAQ

They're still going to know you didn't read the book

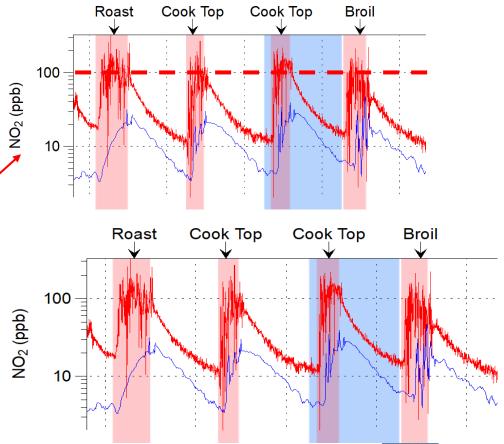
Reducing IAQ Risks

Source reduction / elimination


Source ventilation

Dwelling unit ventilation Filtration / air cleaning

Lots of people in US don't use windows


3600 responses to "Were any windows open at all yesterday?" (Amazon Mechanical Turk)

General ventilation does not fully protect against acute hazards

- Example: Gas cooking in 1400 sf house
- Passive House airtightness
- ERV providing 0.5 ach
- NO₂ in kitchen exceeds safe level
- Cooking particles and VOCs from consumer products present similar challenges

Very limited data on general MV impacts on IAQ

Austria – built 2010-2012

- 62 low-energy with MV
- 61 conventional

Canada⁴ – retrofit existing

- 43 added HRV/ERV
- 40 controls
- Multiple winters

California

- 108 pre-code; built 2002-5
- 70 code-required MV, built 2011-7

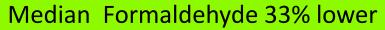
US: OR, CO, IL, Southeast

- ~70 with MV, 70 without
- 30–40 MV homes also with MV off
- Built 2013+, Msd 2018-2020

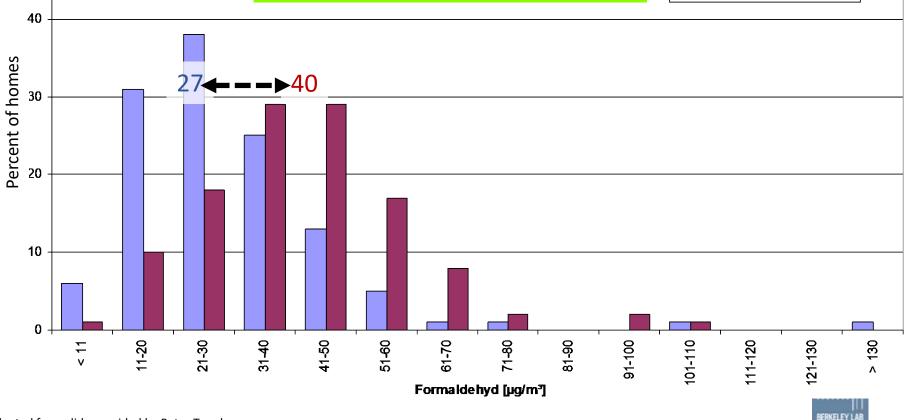
Installed MV airflows and working condition

- Florida¹: **21** homes
- Washington²: **29** homes
- Netherlands³: **299** homes

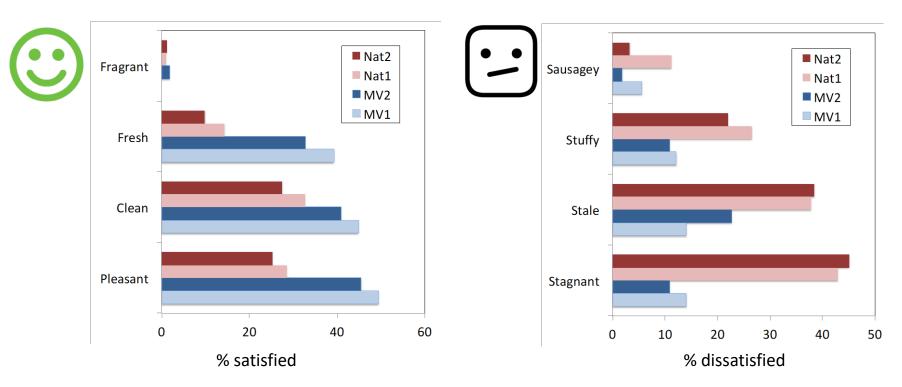
Project Ventilation 3.0 (Austria)


Does mechanical ventilation provide healthy comfortable interiors? Do their mechanical ventilation systems convince consumers?

- 62 low-energy or passive std MV with heat recovery
- 61 conventional natural ventilation (windows)
- 70% detached, 30% apts. in each group:

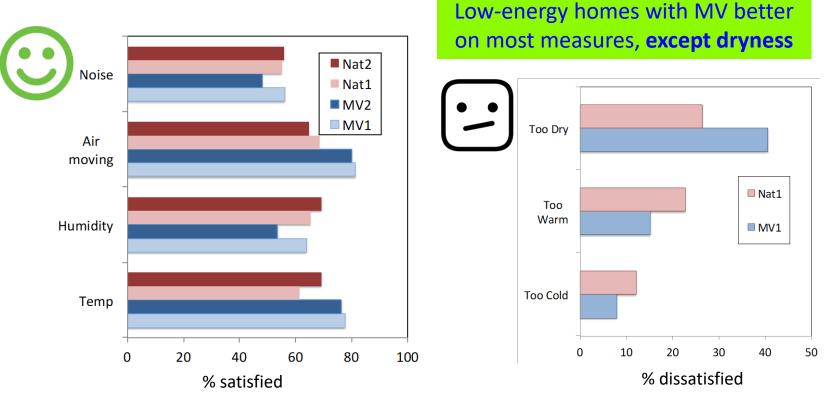

Measure IAQ metrics and air change rate at 3 and 15 months: Survey of perceptions, satisfaction and health status

Austria Results: Formaldehyde @ 3 months



Mechanisch belüftete Objekte
Natürlich belüftete Objekte

Adapted from slide provided by Peter Tappler


Austria: MV improved IAQ satisfaction

Wallner et al. Health and Wellbeing of Occupants in Highly Energy Efficient Buildings: A Field Study. Int J Environ Res Public Health. 2017;14.

Austria: comfort results

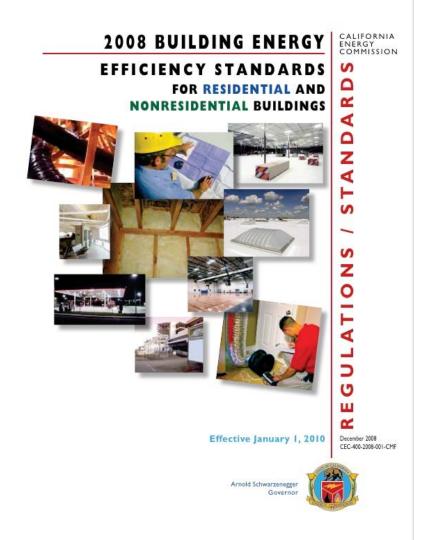
Wallner et al. Health and Wellbeing of Occupants in Highly Energy Efficient Buildings: A Field Study. Int J Environ Res Public Health. 2017;14.

California: Healthy Efficient New Gas Homes Study (HENGH)

Rengie Chan

Yang-Seon Kim

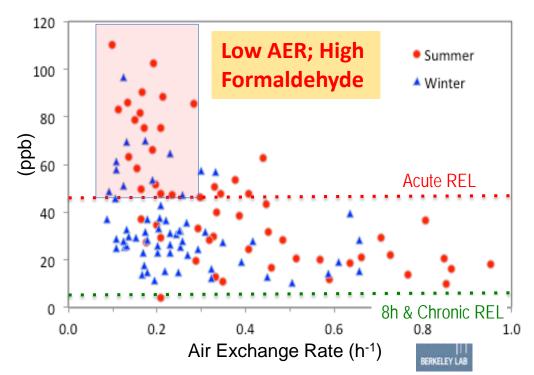
Brett Singer



lain Walker

California Context

- Since 2008, California code has required MV similar to 62.2
 - Includes general, bath, & kitchen
- Starting in ~2010, manufactured wood products with low formaldehyde

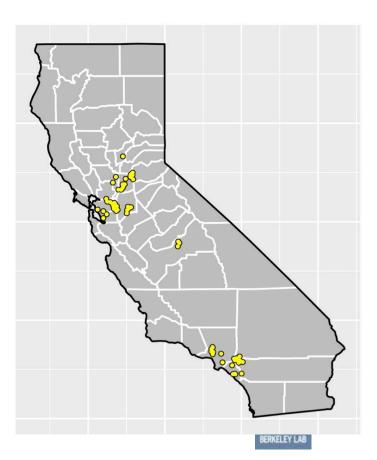

Past California Studies

New Home Survey: 2004-5

- 1500 responses by mail
- Homes built 2002-3
- Self-reported window use
 - 50% didn't use in winter
 - 20% didn't use in spring & fall
- Kitchen & bath fans not used routinely

Field study: 2006-7 (CNHS)

• 108 homes, built 2002-05, 98% electric



Price & Sherman, 2006, LBNL-59620; Offermann, 2009, CEC-500-2009-085

HENGH Field Study

- 70 detached homes, built 2011-17
- Natural gas cooking burners

- Measurements in 2016-2018
- Characterized ventilation equipment
- Measured IAQ, tracked activities for 1 week
- Windows closed; general MV operating

General MV systems exceeded required airflow

Mean required: 63 cfm Mean provided: 96 cfm

- Continuous exhaust (N=55)
- Intermittent exhaust (N=9)
- Continuous inline fan connected to central forced air system (N=4)
- Central fan integrated supply with motorized damper (N=2)

CA: PM_{2.5} and formaldehyde lower with MV

Median Indoor Concentration	CNHS [*] – 98% Electric 2006–07	HENGH - Gas Homes 2016–18
Formaldehyde	29 ppb	18 ppb
PM _{2.5}	11 μg/m³	5.0 μg/m³
NO ₂	1.6 ppb	4.5 ppb

*Offermann (2009).

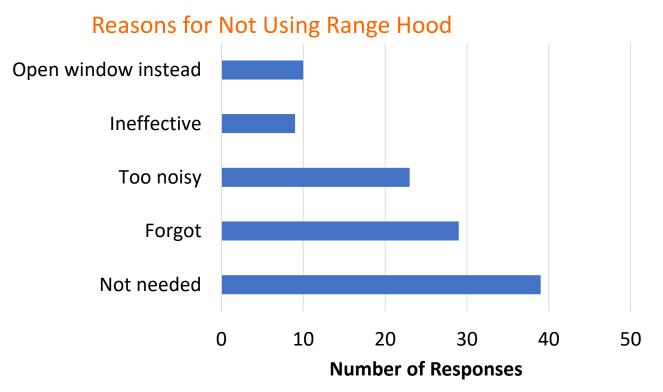
Only **1** in **4** homes had the central ventilation system running as found.

Labels make a difference

Whole-House Ventilation Control	Controller Labelled?	% On As-Found	
On/Off Switch	No (N=42)	5%	
	Yes (N=12)	58%	
Programmable Controller	No (N=10)	50%	
Thermostat	No (N=2)	0%	
Breaker Panel	No (N=1)	100%	
No Controller	No (N=3)	100%	

Labels not always clear

X CONTINUOUS DUTY


 To maintain minimum levels of outside air ventilation required
by the State of California, this fan should be on at all times when the building is occupied, unless there is outdoor air contamination.

Half of the HENGH households reported using range hood sometimes or less frequently

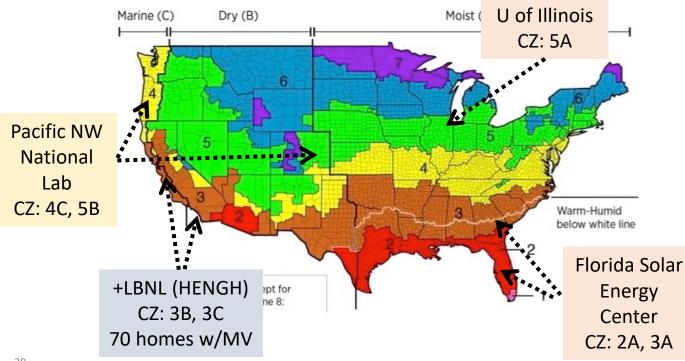
Building America New Home IAQ Study

Context

- Air tightness reduces thermal loads & outdoor pollutants, but can increase indoor contaminants
- ASHRAE 62.2 requires equipment and sets airflows; used by Energy Star, other programs
- Since 2012, IECC requires dwelling unit MV
 - States modify to only require at <3 ACH50
 - Kitchen exhaust not required

Specific Issues

- Questions about necessity, value of MV
- Ventilation alone not sufficient to maintain IAQ
- Limited data on installed performance
- Existing data suggest deficiencies
 - Equipment not performing to spec
 - Specs for kitchen exhaust may not be adequate
 - Equipment not used


Key Questions

- What are air pollutant and IAQ satisfaction levels in new homes?
- What MV equipment is present in homes that meet 62.2 / IECC?
- How do MV system designs and performance vary by climate zone?
- What is the working condition of installed MV equipment?
- What are the airflows when operating and how often do they operate?
- How do occupants use kitchen ventilation when present?
- Are there discernible differences in IAQ in homes with MV?

Building America New Home IAQ Study

• 25-30 homes per climate zone (CZ):

~50% with mechanical ventilation (MV)

- Characterize home, mechanical equipment
- Monitor ventilation, IAQ, activities for 1 week
- Repeat with/out MV operating in 6-8 homes per CZ*

Cold & Marine : Pacific Northwest National Lab

PNNL has many <u>fiel</u> residentia

Cheryn Metzger Manager/Co-Pl Dr. Jian Zhang Chrissi Co-Pl Antonopo

Chrissi Michael Antonopoulos Baechler

Cadmus, Washington State U. and Ecotope

PNNL has conducted and managed many <u>field</u> research studies on residential energy and IAQ

Cadmus, WSU, Ecotope are field data collection experts

Technical Advisory Committee

Mitt Jones/Paul NortonMike LublinerField TechniciansQA/QC

Dave Baylon Senior advisor

Southeast US: Florida Solar Energy Center

Eric Martin Tanvir Chuck Khan, PhD Withers

ck Dave ers Chasar

Jeff Sonne

- Extensive field experience
- Conducted prior studies of MV:
 - Investigating failure rates
 - Quantifying energy impacts
 - Reducing moisture impacts
- Train practitioners

Data Collected for Each Home

- Homeowner IAQ and comfort perceptions
- Ventilation practices and activities that impact IAQ
 - Household characteristics
 - House and mechanical equipment
- Envelope and duct leakage
 - Airflows of ventilation equipment

Monitor

Survey

- Ventilation use & activities that affect IAQ
- Air pollutant concentrations & met data

Survey

Q5 When thinking about your home, how do you feel about the ...?

	l am unhappy with it (1)	l feel it could be improved (2)	l feel it's fine (3)	l am happy with it (4)
Overall quality of home (1)	0	0	0	0
Air quality inside home (2)	0	0	0	0
Air quality outside within neighborhood (3)	0	0	0	0
Ability to control temperature inside home (4)	0	0	0	0
Ability to control humidity inside home (5)	0	0	0	0
Natural lighting (daylight) inside home (6)	0	0	0	0
Noise from heating & cooling system (7)	0	0	0	0
Privacy (8)	0	0	0	0
Security (9)	0	0	0	0

Air Flow Testing

Whole House Ventilation, Dryer: Powered Flow Hood. **Bathroom Exhaust:** Exhaust fan flow box. Kitchen range hood: Custom flow box/duct blaster. **Enclosure and duct leakage:** Delta Q.

Whole House Air Exchange: SF6 Tracer Gas.

Air handler flow: Flow plate.

Slide credit: FSEC

Air Quality Measurements

Photometric Outdoor PM_{2.5}

Photometric Indoor PM_{2.5} Gravimetric Indoor PM_{2.5}

CO₂, PM_{2.5} In multiple rooms

Subset of Homes

Real-time NO₂

30-min resolved Formaldehyde

ved 1-week avg. e Formaldehyde

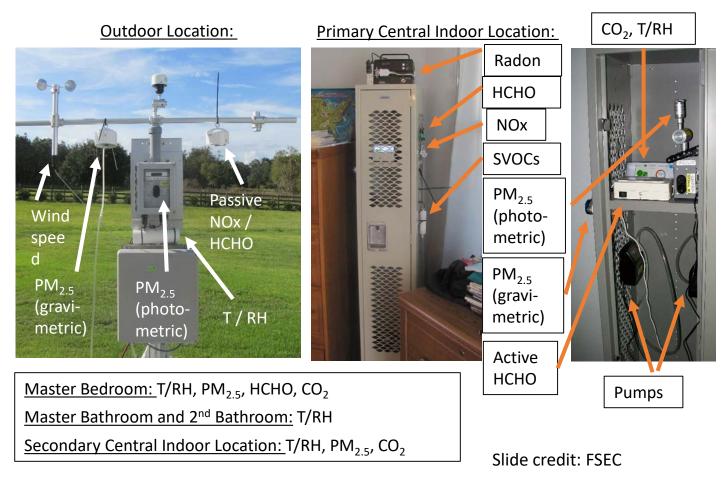
X

1-week NO₂, NO_X

1 week of hourly Radon

Radeit

6-month integrated Radon



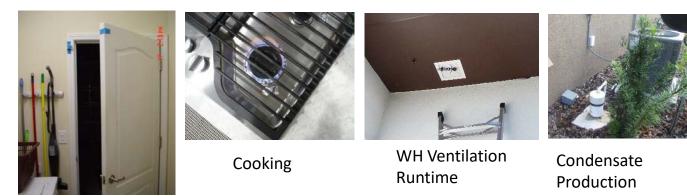
Ultrafine particles

Slide credit: FSEC

Air Quality Measurements (FSEC)

Equipment Monitoring

Clothes Dryer Use



Bath Fan Use

Range Hood Use

Heating/Cooling Runtime

Door Use: Garage, Master Bedroom, Patio

Slide credit: FSEC

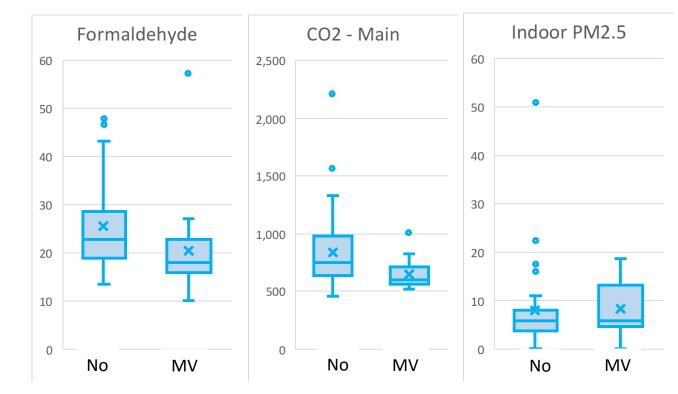
Activity Log

Instructions: Please fill out this activity log each day. If you are unsure, please provide your best guess. Do <u>not</u> list the names of any people.

	Night					Morning					
	Mid- night	1	2	3 am	4	5	6	7	8	9	10
# People in home		am	am	dill	am						
Please add checkmark or X to any hour in which the activity occurred. If several ho											
	Mid- night	1 am	2 am	3 am	4 am	5 am	6 am	7 am	8 am	9 am	10 am
Bad outdoor air ¹											
BBQ/outdoor grill											
Exterior door open											
Window open											
Standard cooking ²											
Microwave											
Spray cleaner											
Vacuuming											
Candle											
Other event ³											
Other event mins.											

BA IAQ Study: Early Data (OR, CO, FL)

Results from 55 homes •26 without MV •4 partial MV •25 with MV	Means	No MV	Yes MV		
	# homes	26	25		
	Formaldehyde	27	20		
	Average CO ₂	850	638		
	Indoor PM _{2.5}	8.2	8.6		
	Outdoor PM _{2.5}	9.0	8.0		


BA IAQ Study: Early Data (OR, CO, FL)

Results from 55 homes

• 26 without MV

• 4 partial MV

• 25 with MV

MV Characterization – Early Findings from FSEC

- In first 16 homes constructed with MV systems, only 4 operating upon arrival.
- 12 of 16 systems turned off by homeowners or contractors or could not be made to work due to non-functioning components.
- In most homes, range hood had at least one setting that delivered 100 cfm.
- In more than half of the homes, at least one bath fan did not deliver 50 cfm.

Mechanical Ventilation Design

- ASHRAE 62.2 is minimum, not best practice
- Need good design AND commissioning
- Good design considers use and maintenance
 - Clear documentation
 - Labeled and intuitive controls
 - Convenient access to change filters
- Relying on central AHU for ventilation uses much more energy
- Best to oversize with variable speed -> smart control

Whole-House Ventilation Design

Exhaust

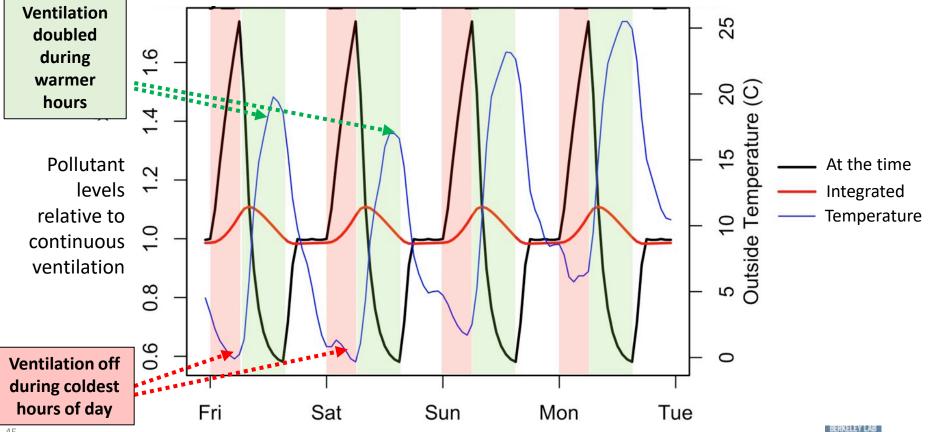
- Lowest first cost
- Easiest to commission
- Ventilation not distributed; can have short-circuiting
- Needs good ceiling and garage wall sealing
- Caution advised in hot, humid climates
- Can impact combustion appliance venting
- Passive vents needed in very tight homes
- Best for mild climates

Supply

- Low first cost
- Can be challenging to commission
- Can be distributed
- Need supply fan or very efficient FAU fan
- Inlet filter must be easily accessible for maintenance
- Tempering essential in cold climates
- If area has high outdoor PM pollution, use good filter*

Balanced

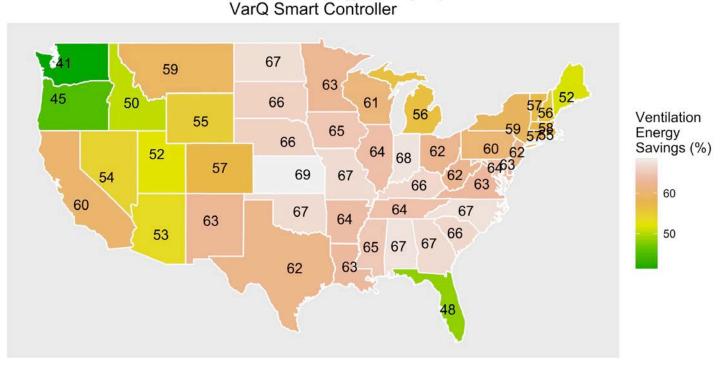
- Most expensive to install and maintain
- Hardest to commission
- Good for distribution: exhaust from wet rooms, supply to living spaces
- Allows for heat and humidity recovery in cold winters
- Can help reduce vapor loads in hot/humid climates
- Best option for Passive and other very air tights homes
- If area has high outdoor PM pollution, use good filter*



Smart Ventilation

- Lower cost and lower-maintenance alternative to HRV or ERV
- Install larger fans with efficient, variable speed motors
- Reduce outdoor air when too hot, humid, polluted, or cold & dry
- Increase airflow at other times
- Can incorporate distribution and mixing

Temperature-Based Control Strategy

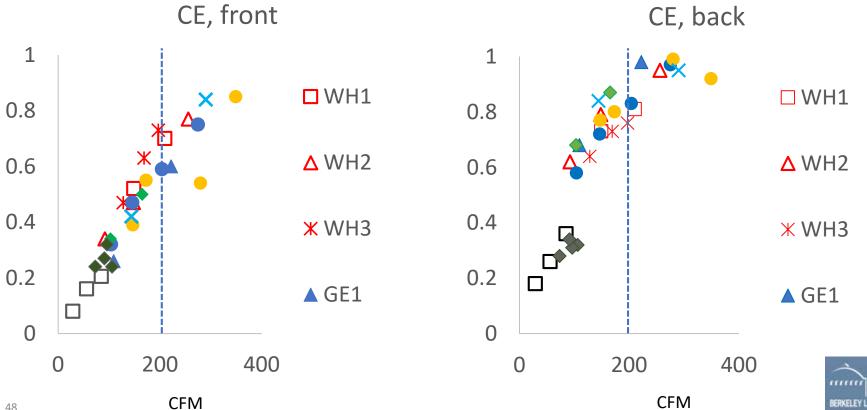


Smart Ventilation – Temperature Control

Median Ventilation Site Energy Savings by State,

Seasonal shift saves up to 80% of ventilation load

Optimum strategy depends on climate and envelope leakage


Field Demonstrations of Smart Ventilation

- Compare Smart Controls to continuous (simple)
- Expect to include both supply and exhaust vary by climate
- Likely based on temperature with seasonal shift
- Goal: 16 homes in 4 climate zones

OTR Microwaves have similar pollutant capture as range hoods, for same airflow

Selected References

- Balvers et al. 2015. Mechanical ventilation in recently built Dutch homes: technical shortcomings, possibilities for improvement, perceived indoor environment and health effects." Architectural Science Review **55**(1): 4-14.
- Chan WR et al. 2018. Indoor Air Quality in New California Homes with Mechanical Ventilation. Paper 633, Proceedings of Indoor Air 2018.
- Eklund et al. 2015. *Pacific Northwest Residential Effectiveness Study -* NEEA Report #E15-015. Prepared by Washington State University Energy Program; 2015.
- Hult EL et al. 2015. Formaldehyde exposure mitigation in US residences: In-home measurements of ventilation control and source control. *Indoor Air* 25:523-535..
- Offermann FJ. 2009. Ventilation and Indoor Air Quality in New Homes. California Energy Commission Report CEC-500-2009-085.
- Price PN and MH Sherman. 2006. Ventilation Behavior and Household Characteristics in New California Houses. Berkeley CA, Lawrence Berkeley National Laboratory. LBNL-59620.
- Sonne JK et al. Investigation of the Effectiveness and Failure Rates of Whole-House Mechanical Ventilation Systems in Florida. FSEC-CR-2002-15. June 2015.

Extra Slides

