Measuring and Assessing Light Source Flicker

Andrew Bierman Lighting Research Center, Rensselaer Polytechnic Institute

> ENERGY STAR® Lighting Webinar Series June 30, 2016

© 2016 Rensselaer Polytechnic Institute. All rights reserved

What is flicker?

- Rapid fluctuation of light output over time
 - Unintentional result from operating on 50/60 Hz line power
 - Can be intentional to control light output
 - For example, pulse width modulation (PWM)

Types of flicker

Periodic

- > Often intentional, e.g. PWM
- > Consequence of ac power

Non-periodic

- > Unintentional
- Often the result of something not working properly
 - End of life
 - Driver/dimmer/lamp incompatibility
 - Power line disturbances

Measuring flicker

(max - min)Percent Flicker = $\frac{(max + min)}{(max + min)}$

For sinusoidal wave shapes: Amplitude Percent Flicker = dc

Percent flicker provides no information about the frequency or wave shape.

Rensselaer

Measuring flicker

Flicker Index = $\frac{Area 1}{Area 1 + Area 2}$

Flicker index depends on both modulation depth (percent flicker) and wave shape

Works well for specific types of flicker, e.g. 60 Hz, periodic

Lighting Research Center

Rensselaer

Measuring flicker

IEC Flicker Meter

- > Flicker from incandescent lamps due to powerline disturbances
- > Could be simplified when measuring light output directly

ASSIST Flicker Metric

Research Center

7 © 2016 Rensselaer Polytechnic Institute. All rights reserved. Rensselaer

Periodic Flicker waveform: Obvious flicker

© 2016 Rensselaer Polytechnic Institute. All rights reserved

Periodic flicker waveform: No flicker

An example for metric comparison

Visible flicker

Research Center

← Percent Flicker →
← Flicker Index →
← Flicker Metric →

→ 76
→ 0.073
→ 0.3

3 No Visible flicker

© 2016 Rensselaer Polytechnic Institute. All rights reserved

Testing LED screw-base lamps with dimmers

Test conditions

- 20 lamp types
- 5 dimmer types
- 21 tests per lamp
 - > 10 measurements / condition
 - > 4200 waveforms acquired
 - 20 lamps x 21 tests x 10
 repetitions

Measurements

Percent Flicker

Center

• Flicker Index

ighting

ASSIST Flicker Metric

Did not observe flicker
Perceived minimal flicker, undecided
Definitely see flicker

Test condition	4-lamp	1-lamp	4-lamp
Bypass	1		
DIM at MAX		5	5
DIM at min		5	5
Total	21		
D1 D2 D3	D4 D5	D1 D2	Image: Constraint of the second se
	Flicker observations		
Lamp ID	DI D2	D3 D4 D5 DI	4-LAMP D2 D3 D4 D5
Bypass Dim at MA Dim at MI	AX N		

Rensselaer

Testing procedure

 Stabilize with dimmer bypassed according to IES LM79-08

- Light output and power variation < 0.5% over 30 minutes
- > Ambient temperature 25° ±1° C
- > Record maximum light output (MLO)
- Connect dimmer and test at maximum and minimum dimmer settings
 - > Minimum setting 20% of MLO, or as specified by manufacturer if lower
 - > Stabilize to < 0.5% variation over 2.25 minutes

Dimmers used

• 5 Different dimmer types

- Forward phase, incandescent, magnetic low voltage (2 models)
- Forward phase, incandescent, CFL and LED (2 models)
- Reverse phase: electronic low voltage (1 model)

Forward phase

Reverse phase

Results: Flicker during dimming

Observed I-LAMP 4-LAMF I-LAMP DI D2 D3 D4 D5 DI D2 D3 D4 D5 amp ID Test conditio DI D2 D3 D4 D5 DI D2 D3 D4 D5 Bypass . Dim at MAX Dim at MIN Bypass 2 Dim at MAX Dim at MIN Bypass 3 Dim at MAX Dim at MIN Bypass 4 Dim at MAX Dim at MIN B 5 Dim at MAX Dim at MIN Byg 6 Dim at MAX Dim at MIN Bypass 7 Dim at MAX Dim at MIN Bypass 8 Dim at MAX Dim at MIN Bypas 9 Dim at MAX Dim at MIN Bypass 10 Dim at MAX Dim at MIN Bypass н. Dim at MAX Dim at MIN Bypass 2 Dim at MAX Dim at MIN Bypass 3 Dim at MAX Dim at MIN Bypass 14 Dim at MAX Dim at MIN Byp 15 Dim at MAX Dim at MIN 6 Dim at MAX Dim at MIN Bypass 17 Dim at MAX Dim at MIN Bypass 18 Dim at MAX Dim at MIN Bypass 19 Dim at MAX Dim at MIN Byp 20 Dim at MAX

Flicker Metric

4-LAMP

Test condition	Observed	Correctly predicted	Accuracy of prediction
Did not observe flicker	387	386	99.7%
Undecided	15	6	40%
Definitely see flicker	18	14	88%

Did not observe flicker
Perceived minimal flicker, undecided
Definitely see flicker

Dim at MIN

Lighting Research Center

LED A-lamp on dimmer: No Flicker

LED A-lamp on dimmer: Obvious Flicker

LED A-lamp on dimmer: No Flicker

LED A-lamp on dimmer: Noticeable Flicker

LED A-lamp on dimmer: No Flicker

LED A-lamp on dimmer: Noticeable Flicker

Test methodology comments

- A bandwidth requirement is needed for measuring light output waveforms. "Less than 5% attenuation (-26 dB) from dc to 500 Hz."
- An amplitude resolution requirement is needed. "Must resolve < 0.1% change in light level."
- Some lamp/dimmer combinations would not stabilize when dimmed; output and power input would oscillate. Used steady-state criterion.
- Test time dominated by stabilization
 - > Ranged from 2 to 5+ hours per lamp tested on 5 dimmers
- A 5% light output tolerance at 20% (or less) is difficult and sometimes impossible to achieve. Requires a stability of 0.25% of full scale.
 - > Express all light output tolerances a percentage of maximum light output
- Sample more waveforms spaced over longer time interval in order to catch the transient, stochastic nature of flicker for some products

Thank You!

 For more information visit http://www.lrc.rpi.edu/programs/solidstate/assist/flicker.asp

