1 Introduction

The purpose of this document is to ensure uniform treatment of luminous and radiant flux maintenance and color maintenance (“maintenance”) data by ENERGY STAR manufacturing partners (“partners”), subcomponent manufacturers, and EPA-Recognized Laboratories and Certification Bodies.

This document is intended to support the use of LM-80 data (i.e. IES LM-80-08 and its Addendum A, or ANSI//IES LM-80-15) for ENERGY STAR certification of lighting products. It addresses maintenance testing and reporting for LED packages, LED arrays, and LED modules (“subcomponent(s)”) referenced to demonstrate compliance with ENERGY STAR lumen maintenance and/or color maintenance requirements detailed in the Program specifications for luminaires and lamps (“product(s)”).

This document addresses topics related to subcomponent-level maintenance data that are not explicitly covered in ENERGY STAR lighting specifications. The U.S. Environmental Protection Agency (EPA) will periodically review this document to ensure its content acknowledges the latest technological improvements to solid state lighting subcomponents.

Please note: this document includes requirements which may be in addition to, or in place of, the testing and reporting requirements that are detailed in LM-80. Laboratories must clearly note in their test reports any and all variances from the LM-80 method of measurement.

Timeline for Implementation

After (final publication date), these requirements may be applied in lieu of the requirements in ENERGY STAR Program Guidance Regarding LED Package, LED Array and LED Module Lumen Maintenance Performance Data Supporting Qualification of Lighting Products, including with respect to LM-80 testing already completed, currently underway or in the final planning stages. After (final publication date), these requirements may be applied to ongoing and new LM-80 testing.

The requirements for reporting of LM-80-related test data—detailed in Section 3—must be applied to all reports issued or revised after (date 90 days after final publication of this document). This may be accomplished through supplemental documentation (e.g. cover page). Preexisting test reports issued prior to that date are applicable without any changes.

LM-80 reports used for new ENERGY STAR certification must comply with these requirements after (date 18 months after final publication of this document).

Contents

1 Introduction.. 1
 Timeline for Implementation .. 1
2 Definitions... 2
3 Content of LM-80 Test Reports for ENERGY STAR Certification .. 3
4 Application of LM-80 Test Reports for ENERGY STAR Certification .. 6
5 Requirements for Successor Subcomponents ... 6

1 This document will be applicable to IES LM-80-08 and its Addendum A, or ANSI//IES LM-80-15, once those documents are incorporated into the applicable (i.e., Lamps or Luminaires) specification.
2 Definitions

Case Temperature (T_s): The temperature of the thermocouple attachment point on the LED light source package as defined by the manufacturers of the package. (IES LM-80-08) The temperature measurement point for the device under test (DUT) is defined by the DUT manufacturer. In some cases the temperature measurement point is defined as the solder point on the printed circuit board. In other instances this is defined as a specific location on the DUT case. Thus T_s is sometimes designated as T_{sp} or T_C in manufacturer’s literature. (IES LM-80-15)

Chip-on-board (COB) LED packages: See multi-die LED Packages.

Correlated Color Temperature (CCT): The absolute temperature of a blackbody whose chromaticity most nearly resembles that of the light source. (IES RP-16-10). CCT values in this document refer to the nominal CCT values and their associated targets and tolerances defined in ANSI C78.377.

Current Density: ratio of the drive current reported in the LM-80 test report to the area of epitaxial structure, in mA/mm².

LED Array or Module: An assembly of LED packages (components) or dies on a printed circuit board or substrate, possibly with optical elements and additional thermal, mechanical, and electrical interfaces that are intended to connect to the load side of a LED driver. Power source and ANSI standard base are not incorporated into the device. The device cannot be connected directly to the branch circuit. (IES RP-16-10)

LED Driver Case Temperature Measurement Point (TMPc): A location on an LED driver case, designated by its manufacturer, which will have the highest temperature of any point on the driver case during normal operation. This point is often designated T_S.

LED Package: An assembly of one or more LED dies that includes wire bond or other type of electrical connections, possibly with an optical element and thermal, mechanical, and electrical interfaces. Power source and ANSI standardized base are not incorporated into the device. The device cannot be connected directly to the branch circuit. (IES RP-16-10)

LED Temperature Measurement Point (TMPLED): A location on an LED package/module/array, designated by its manufacturer, which provides a surrogate temperature measurement location for the actual LED junction. The TMPLED may be a solder joint at the board attachment site, a point on the LED package case, or a location on the board of an LED module or array.

Lumen Maintenance: Luminous flux maintenance (often referred to as “lumen maintenance”) is the remaining luminous flux output (typically expressed as a percentage of the initial luminous flux output) at any selected elapsed operating time. Luminous flux maintenance (or “lumen maintenance”) is the converse of luminous flux depreciation (or “lumen depreciation”). (IES LM-80-15)

Multi-die LED Packages: LED packages constructed as an assembly of LED dies on a printed circuit board (PCB) or other substrate (e.g. ceramic panel or molded surface-mounted device) with phosphor layer(s) overlaying all dies. Power source and ANSI standard base are not incorporated into the device. The device cannot be connected directly to the branch circuit. (Often referred to as “chip-on-board” or COB LED packages.)

Power Density: ratio of the total input power reported in the LM-80 test report to the area of epitaxial structure, in W/mm².

Series: subcomponents marketed with naming that implies common construction processes and materials, and common performance attributes. Where this is not the case, series-related provisions detailed in this document must not be employed.

*Examples illustrating “series”:
- Bridgelux "RS Array Series"
- Citizen Electronics "CL-L253E Series"
- Cree XP-G ‘series’
- Lumileds LUXEON M ‘series’
- Nichia “757G Series”
- OSRAM Opto Semiconductors Golden DRAGON Plus ‘series’*
Successor: an LED package, array, or module may be considered a “successor” to another subcomponent if, relative to the referenced original subcomponent, it features all of the following:

1. Photometric performance (i.e. maintenance and luminous flux) greater than or equal to the performance detailed in the referenced original LM-80 test report; and,
2. A unique model number; and,
3. Equal or fewer LED dies; and,
4. The same materials in the optical path after exiting epitaxial structures; and,
5. The same type(s) of deposition processes employed; and,
6. Relevant tested case temperature (T₃) value(s) equal to those of the referenced original subcomponent;
 Example: if the referenced original subcomponent was tested at 55°/85°/105° C and the proposed successor was tested at 85°/105°/120° C, comparisons between 85° C and 105° C (the overlapping temperatures) would be allowed.
7. CCT in the same chromaticity range as the original subcomponent as follows:
 a. 2200 to 2700 K,
 b. 3000 and 3500 K, or
 c. 4000 to 6500 K; and,
8. Equal or lower thermal resistance; and,
9. Equal or lower tested subcomponent electrical input power; and,
10. Equal or lower average current density (i.e. mA/mm²) or power density (i.e. W/mm²) per LED die as determined per the applicable tested drive current in the LM-80 report.

3 Content of LM-80 Test Reports for ENERGY STAR Certification

1. LM-80 test reports must reference third-party accreditation to illustrate that subcomponent testing was conducted in accordance with the testing method outlined in IES LM-80-08 and its Addendum A, or in ANSI/IES LM-80-15², except as otherwise detailed in this document or in ENERGY STAR specifications.
2. LM-80 test reports must comply with the reporting requirements outlined in IES LM-80-08 and its Addendum A, or in ANSI/IES LM-80-15³, and include each of the items below, except as otherwise detailed in this document or in ENERGY STAR specifications.
 a. The date (i.e. month/day/year) testing was initiated;
 b. The date the report was first issued, and revised (if applicable);
 c. Sampling method and sample size as required in LM-80;
 d. Test results for each case temperature (T₃) and drive current combination;
 e. Description of the subcomponent including model number and whether it is an LED package, LED array or LED module;
 f. ANSI target, and calculated CCT value(s) for each subcomponent in the sample set, at t=0;
 g. Chromaticity shift value (Δu’v’) on the CIE 1976 diagram at each measurement point for each subcomponent in the sample set;
 h. Average current density per LED die (i.e., mA/mm²) as determined per the applicable tested drive current in the LM-80 report;
 i. Average power density per LED die (i.e., W/mm²); and,
 j. Nominal Color Rendering Index (Ra) for the tested sample set. If the set includes units with different nominal Rₐ values, please list all applicable values.

Items listed above not required in a standard LM-80 report can be included in a cover sheet provided by the LED manufacturer. For example:

² This document will be applicable to IES LM-80-08 and its Addendum A, or ANSI/IES LM-80-15, once those documents are incorporated into the applicable (i.e., Lamps or Luminaires) specification.
³ This document will be applicable to IES LM-80-08 and its Addendum A, or ANSI/IES LM-80-15, once those documents are incorporated into the applicable (i.e., Lamps or Luminaires) specification.
ENERGY STAR® LM-80 Cover Sheet

Administrative Information

Tested subcomponent series:	____________________________

Tested subcomponent model number:	____________________________

Report issue date:	____________________________

Report revision date (if applicable):	____________________________

Testing start date:	____________________________

Testing completion date:	____________________________

Device under test (DUT) Identification

DUT manufacturer’s name:	____________________________

DUT identification, e.g., model number:	____________________________

Description of DUT, including if the DUT is an LED package, array or module:	____________________________

DUT Characteristics

Average current density per LED die (mA/mm²):	____________________________

Average power density per LED die (W/mm²):	____________________________

Nominal CRI (Rₐ) of the tested sample set:	____________________________

(If the set includes units with different nominal Rₐ values, please list all applicable values)	____________________________

Die spacing:	____________________________

3. LM-80 test reports must indicate the tested subcomponent’s model or series number. Other subcomponent models or series numbers for which the data are applicable may also be listed if the others are wholly identical and indistinguishable except for model or series number (i.e. model or series number was changed for marketing purposes only).

 Example: Baker Semiconductors tests the 2700K version of their JE-B series LED package. The LM-80 report must indicate that the “JE-B series” was tested. The SR-B series subcomponents are wholly identical and indistinguishable from the JE-B series except for the change in series number, for marketing purposes. The report may indicate that the report is also applicable to the SR-B series.

4. LM-80 test reports must include a minimum of one close up perspective view photograph or isometric view diagram of the subcomponent, illustrating the subcomponent’s maximum overall dimensions (i.e. length, width, height) and including notation of the manufacturer-designated LED temperature measurement point (TMP_LED).

5. LM-80 test reports must include a minimum of one reported case temperature (Tₜ). Test reports need not include three Tₜ values, except as required to estimate a product’s rated lumen maintenance life value using temperature data interpolation (as applicable; see IES TM-21-11 section 6 and its Addendum B⁴).

6. If more than one case temperature (Tₜ) is reported, all Tₜ subsets of the sample used to generate each LM-80 test report must be of the same correlated color temperature(s).

 Example: the 55 °C case temperature sample subset should be composed of subcomponents of the same CCT(s) as the other two case temperature subsets.

⁴ This document will be applicable to IES LM-80-08 and its Addendum A, or ANSI//IES LM-80-15, once those documents are incorporated into the applicable (i.e., Lamps or Luminaires) specification.
7. For multi-die LED packages (aka "chip-on-board" or COB) LED packages:

![Figure 1: Example of Multi-die LED Package](image)

One LM-80 test report may represent a range of multi-die LED package sizes (i.e. packages with a varying number of LED dies) and other subcomponent series if each of the following is satisfied:

a. LM-80 testing has been conducted on the largest LED array (i.e. the array with the greatest number of LED dies) that the manufacturer believes will be used in a certified product; and,

b. The complete model number of the tested multi-die LED package is reported, and is noted as the tested model. The reported number must include the complete ordering code/nomenclature required by the subcomponent manufacturer to sell the exact subcomponent tested; and,

c. the average calculated current-density-per-die of the tested model or series is reported; and,

d. The model numbers for the other multi-die LED package sizes and series for which the test data are deemed applicable are detailed in the report, and those models exhibit:
 i. electrical power density (i.e. W/mm² of PCB or substrate total area) less than or equal to the tested LED package; and,
 ii. average current density per LED die (i.e. mA/mm² of epitaxial structures) less than or equal to the tested LED package; and,
 iii. identical materials used (note: this does not constrain phosphor quantity and/or dimensional adjustments); and,
 iv. die spacing greater than or equal to the tested LED array; and,
 v. identical construction processes used; and,

e. The model numbers for the other multi-die LED package sizes for which the test data are deemed applicable may not be represented as having been tested to generate the data detailed in the report.

8. For LED arrays constructed as an assembly of LED packages on a printed circuit board (PCB), each with their own phosphor layer:

![Figure 2: LED Module Employing 4 LED Packages](image)

LM-80 test reports must be available either:

a. for the individual LED packages:
 i. For LED packages in the LED array that are within a defined ANSI C78.377 quadrangle, these LEDs can be covered by LM-80 reports consistent with Section 4.3.
 ii. For LED packages in the LED array that are outside the ANSI C78.377 quadrangles, each different type of LED (e.g., phosphor-converted green, phosphor-converted amber, 1800K CCT phosphor-converted white, single-color red) must be supported by its own LM-80 report; or,

b. for the entire LED array, with current density-per-LED package reported.
4 Application of LM-80 Test Reports for ENERGY STAR Certification

1. LM-80 test reports issued or revised on or after (90 days after final publication of this document) and referenced to support product certification must comply with section 3 of this document. Preexisting test reports issued or revised prior to (date 90 days after final publication of this document) are applicable as existing without changes.

2. The subcomponent make(s) and model number(s) used in the product to be certified must be reported by the partner, detailing the complete ordering code(s)/nomenclature(s) required by the subcomponent manufacturer(s) to sell the subcomponents to the partner.

3. The correlated color temperature(s) of the LM-80 sample set may differ from the certified product as follows:

<table>
<thead>
<tr>
<th>CCT of LM-80 Sample Set</th>
<th>CCT of Certified Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>2200K to 2700K</td>
<td>any nominal CCT ≥ 2200K covered by the specification</td>
</tr>
<tr>
<td>3000K and 3500K</td>
<td>any nominal CCT ≥ 2700K covered by the specification</td>
</tr>
<tr>
<td>4000K to 6500K</td>
<td>any nominal CCT ≥ 4000K covered by the specification</td>
</tr>
</tbody>
</table>

4. The LED package, array or module's drive current value, or the average current density per LED die (i.e. mA/mm²) reported in an LM-80 test report referenced to support certification of a product must be greater than or equal to that of the subcomponent as employed in the product.

5. Certification of a product employing both phosphor-converted and single-color LED packages must demonstrate compliance with all maintenance requirements by referencing an LM-80 test report for a sample of LED arrays, with each array composed of both types of packages, or by referencing an LM-80 report and conducting a TM-21 projection for each type of package present in the product. In the latter case, projections for each type of LED package must each demonstrate compliance with the relevant lumen maintenance requirements independently.

6. For chip-on-board LED packages the LM-80 test report referenced to support certification of a product must:
 a. Include the LED package model or series number employed in the product; and,
 b. Demonstrate that the average current density per LED die (i.e. mA/mm² of epitaxial structures) of the tested LED package model or series is greater than or equal to the current density per LED die employed in the product.

7. For LED arrays constructed as an assembly of LED packages on a printed circuit board, each with their own phosphor layer, the in situ temperature at the LED temperature measurement point (T\text{MPLED}) of the hottest package in the array must be used for luminous or radiant flux maintenance projection purposes.

5 Requirements for Successor Subcomponents

A partner may present a product for certification using a subcomponent considered a successor by the subcomponent manufacturer if the subcomponent meets the successor definition (see section 2); and,

1. a complete LM-80 test report is provided for the referenced original subcomponent;
2. ENERGY STAR lumen maintenance and, as applicable, color maintenance performance requirements would be satisfied using the referenced original;
3. a minimum of 3,000 hours of LM-80 testing data are presented (and updated after 6,000 hours as noted below) for the successor subcomponent, compliant with LM-80 and this document;
4. presented data demonstrate:
 a. average initial luminous flux and lumen maintenance (at 3,000 hours and 6,000 hours of LM-80 testing) are greater than or equal to 99% of original subcomponent performance; and the sample unit(s) with the lowest initial luminous flux and lumen maintenance are greater than or equal to 99% of the original subcomponent unit(s) with the lowest initial luminous flux and lumen maintenance.
 b. maximum chromaticity shift (i.e. color maintenance) observed on any unit (at 3,000 hours and 6,000 hours of LM-80 testing) is less than or equal to 101% of the maximum chromaticity shift observed on any original subcomponent unit;
5. Partner provides a date, not to exceed 170 days from the 3,000 hour date, when the successor subcomponent's complete (i.e. final, 6,000 hour) LM-80 test report will be available from the subcomponent manufacturer and agrees to provide the complete LM-80 test report for the successor subcomponent as soon as it is available.

Certification of products employing successor subcomponents may be withdrawn if the final 6,000 hour successor LM-80 test report is not provided in a timely manner, or if the test report does not demonstrate equal or improved performance relative to the referenced original LM-80 test report.