Following is the Final Draft Version 2.0/Version 3.0 product specification for ENERGY STAR certified Pool Pumps. A product shall meet all of the identified criteria if it is to earn the ENERGY STAR.

1 DEFINITIONS

Provided below are definitions of the relevant terms in this document. In Sections 1.1-1.4, all definitions reference the definitions section of the DOE Test Procedure for Dedicated Purpose Pool Pumps at 10 CFR 431.462, except 1.2H, Pool Pump Replacement Motors, which has no comparable DOE definition.

1.1 General

A) Pump: Equipment designed to move liquids (which may include entrained gases, free solids, and totally dissolved solids) by physical or mechanical action and includes a bare pump and, if included by the manufacturer at the time of sale, mechanical equipment, driver, and controls.

B) Dedicated Purpose Pool Pump: Comprises self-priming pool filter pumps, non-self-priming pool filter pumps, waterfall pumps, pressure cleaner booster pumps, integral sand-filter pool pumps, integral-cartridge filter pool pumps, storable electric spa pumps, and rigid electric spa pumps.

C) Pool Filter Pump: Means an end suction pump that:

 a. Either:

 i. Includes an integrated basket strainer, or;

 ii. Does not include an integrated basket strainer for operation, but requires a basket strainer for operation, as stated in manufacturer literature provided with the pump; and

 b. May be distributed in commerce connected to, or packaged with, a sand filter, removable cartridge filter, or other filtration accessory, so long as the filtration accessory are connected with consumer-removable connections that allow the filtration accessory to be bypassed.

D) Control: Any device that can be used to operate the driver. Examples include, but are not limited to, continuous or non-continuous controls, schedule-based controls, on/off switches, and float switches.

E) Variable Speed Drive: Equipment capable of varying the speed of the motor.

F) Freeze Protection Control: Controls that, at certain ambient temperature, turn on the dedicated-purpose pool pump to circulate water for a period of time to prevent the pool and water in plumbing from freezing.

G) Full-Flow Rate: Flow rate, in gallons per minute, at maximum speed on curve C.

H) Pool Pump Timer: Means a pool pump control that automatically turns off a dedicated-purpose pool pump after a run-time of no longer than 10 hours.
1.2 Pump Types

A) **Self-Priming Pump**: Means a pump that either is a self-priming pool filter pump or a pump that:
 a. Is designed to lift liquid that originates below the centerline of the pump inlet;
 b. Contains at least one internal recirculation passage; and
 c. Requires a manual filling of the pump casing prior to initial start-up, but is able to re-prime after the initial start-up without the use of external vacuum sources, manual filling, or a foot valve.

B) **Self-Priming Pool Filter Pump**: A pool filter pump that is certified under NSF/ANSI 50-2015 (incorporated by reference, see 10 CFR §431.463) to be self-priming or is capable of re-priming to a vertical lift of at least 5.0 feet with a true priming time less than or equal to 10.0 minutes, when tested in accordance with section F of appendix B or C of 10 CFR 431, and is not a waterfall pump.

 Note: Pumps designated Inground Pool Pumps in previous ENERGY STAR specifications are now considered Self-Priming Pool Filter Pumps.

C) **Non-Self-Priming Pool Filter Pump**: A pool filter pump that is not certified under NSF/ANSI 50-2015 (incorporated by reference, see 10 CFR §431.463) to be self-priming and is not capable of re-priming to a vertical lift of at least 5.0 feet with a true priming time less than or equal to 10.0 minutes, when tested in accordance with section F of appendix B or C of 10 CFR 431, and is not a waterfall pump.

 Note: Pumps designated Aboveground Pool Pumps in previous ENERGY STAR specifications are now considered Non-Self-Priming Pool Filter Pumps.

D) **Integral Cartridge Filter Pool Pump**: An integral cartridge filter pool pump is a pump that requires a removable cartridge filter, installed on the suction side of the pump, for operation; and the cartridge filter cannot be bypassed.

E) **Integral Sand Filter Pool Pump**: An integral sand filter pool pump is a pump distributed in commerce with a sand filter that cannot be bypassed for testing.

F) **Rigid Electric Spa Pump**: An end suction pump that does not contain an integrated basket strainer or require a basket strainer for operation as stated in manufacturer literature provided with the pump and that meets the following three criteria:
 a. Is assembled with four through bolts that hold the motor rear endplate, rear bearing, rotor, front bearing, front endplate, and the bare pump together as an integral unit;
 b. Is constructed with buttress threads at the inlet and discharge of the bare pump; and
 c. Uses a casing or volute and connections constructed of a non-metallic material.

G) **Storable Electric Spa Pump**: A pump that is distributed in commerce with one or more of the following:
 a. An integral heater; and
 b. An integral air pump.

H) **Pool Pump Replacement Motor**: A motor designated as a specific replacement part intended for pool pump model(s) as specified by pump manufacturer and/or a motor designed and marketed to consumers for use as a pool pump motor.

I) **Pressure Cleaner Booster Pump**: An end suction, dry rotor pump designed and marketed for pressure-side pool cleaner applications, and which may be UL listed under ANSI/UL 1081-2016, "Standard for Swimming Pool Pumps, Filters, and Chlorinators.

J) **Waterfall Pump**: A waterfall pump is a pool filter pump with maximum head less than or equal to 30 feet, and a maximum speed less than or equal to 1,800 rpm.
Note: EPA has moved integral cartridge filter and integral sand filter pool pumps from Section 1.3 Product Sub-Types to Section 1.2 Pump Types. This change is to clarify that integral filter pumps are not a subset of non-self-priming pool filter pumps, since these products must have a bypassable filter assembly, and integral filter pumps cannot bypass the filter by definition.

1.3 Product Sub-Types

A) Single-speed Dedicated Purpose Pool Pump: A dedicated purpose pool pump that is capable of operating at only one speed.

B) Two-speed Dedicated Purpose Pool Pump: A dedicated-purpose pool pump that is capable of operating at only two different pre-determined operating speeds, where the low operating speed is less than or equal to half of the maximum operating speed and greater than zero, and must be distributed in commerce either:
 a. With a pool pump control (e.g., variable speed drive and user interface or switch) that is capable of changing the speed in response to user preferences; or
 b. Without a pool pump control that has the capability to change speed in response to user preferences, but is unable to operate without the presence of such a pool pump control.

C) Multi-speed Dedicated Purpose Pool Pump: A dedicated-purpose pool pump that is capable of operating at more than two discrete, pre-determined operating speeds separated by speed increments greater than 100 rpm, where the lowest speed is less than or equal to half of the maximum operating speed and greater than zero, and must be distributed in commerce with an on-board pool pump control (i.e., variable speed drive and user interface or programmable switch) that changes the speed in response to pre-programmed user preferences and allows the user to select the duration of each speed and/or the on/off times.

D) Variable-speed Dedicated Purpose Pool Pump: A dedicated-purpose pool pump that is capable of operating at a variety of user-determined speeds, where all the speeds are separated by at most 100 rpm increments over the operating range and the lowest operating speed is less than or equal to one-third of the maximum operating speed and greater than zero. Such a pump must include a variable speed drive and be distributed in commerce either:
 a. With a user interface that changes the speed in response to pre-programmed user preferences and allows the user to select the duration of each speed and/or the on/off times; or
 b. Without a user interface that changes the speed in response to pre-programmed user preferences and allows the user to select the duration of each speed and/or the on/off times, but is unable to operate without the presence of a user interface.

1.4 Product Ratings

A) Rated Horsepower (HP): The rated horsepower is the product of the measured full load speed and torque, determined based on the maximum continuous duty motor power output rating allowable for the motor's nameplate ambient rating and insulation class, as determined in accordance with the test procedure in 10 CFR §431.464(b) and applicable sampling plans in 10 CFR §429.59. May be less than Total Horsepower where the Service Factor is > 1.0, or equal to Total Horsepower where the Service Factor = 1.0. Also known as Nominal Horsepower.

B) Service Factor: A multiplier applied to Rated Horsepower of a motor to indicate the percent above Nominal Horsepower at which a pump motor may operate continuously without exceeding its allowable insulation class temperature limit, provided the other design parameters such as rated voltage, frequency, and ambient temperature are within limits, as determined in accordance with the test procedure in 10 CFR §431.464(b) and applicable sampling plans in 10 CFR §429.59.

Note: In accordance with E.3.3, Appendix B to 10 CFR 431 Subpart Y, Service Factor shall be 1.0 for residential applications (Single phase AC or DC Motors).

C) Total Horsepower: The product of the Rated Horsepower and the Service Factor of a motor used on a Pool Pump (also known as Service Factor Horsepower, SFHP) based on the maximum
continuous duty motor power output rating allowable for nameplate ambient rating and motor insulation class, as determined in accordance with the test procedure in 10 CFR §431.464(b) and applicable sampling plans in 10 CFR §429.59. Total Horsepower = Rated Horsepower x Service Factor. For example, a 1.5 HP pump with a 1.65 Service Factor produces 2.475 HP (Total Horsepower) at the maximum Service Factor point.

D) Rated Hydraulic Horsepower (hhp): The pump output power (in HP) as determined in accordance with the test procedure in 10 CFR §431.464(b) and applicable sampling plans in 10 CFR §429.59. This measurement is the pump power output on reference Curve C at maximum operating speed and full impeller diameter.

1.5 Testing and Certification

A) Pump Performance Curve: A curve comparing the Total Head in feet of water to the Rate of Flow in gallons per minute (GPM) for a given pump at a given Motor Speed.

B) System Curves: An equation that defines the relationship between flow and head in a fixed hydraulic network. System Curves A, B, and C represent different standard plumbing systems. The curves are used to help size a pump based on the pool size, pipe system, and pool features present in a given pool system. They are plotted on the same graph as Pump Performance Curves, which compare Rate of Flow (Q) to Total Head (H). The System Curve equations are the following, where H is total system head in feet of water and Q is flow in GPM:

a. Curve A: \(H = 0.0167 \times Q^2 \)
b. Curve B: \(H = 0.050 \times Q^2 \)
c. Curve C: \(H = 0.0082 \times Q^2 \)

C) Normal Operating Point: Point that corresponds to the rate of flow, total head, and energy consumption at which a pump will operate given a specific system curve and a specific pump speed. It corresponds to the point of intersection of the pump performance and system curves.

D) Rate of Flow (Q): The total volume throughput per unit of time. For the ENERGY STAR Pool Pump Test Method, Rate of Flow is expressed as GPM.

E) Motor Speed (n): The number of revolutions of the motor shaft in a given unit of time. For the ENERGY STAR Pool Pump Test Method, Motor Speed is expressed as revolutions per minute (RPM).

F) Head (H): Energy content of the liquid at any given point in the system, expressed in units of energy per unit weight of liquid. For residential pool pumps, the measuring unit for Head is feet of water.

G) Standby Mode: A reduced power state in which the unit is connected to an AC main power source and pump controls/timers remain On, but the motor remains idle, and no water is being pumped through the system.

H) Energy Factor (EF): The volume of water pumped in gallons per watt-hour of electrical energy consumed by the pump motor (gal/Wh).

I) Weighted Energy Factor (WEF): A measurement of pump efficiency based on performance at one or two operating points, which are uniquely defined for each DPPP variety and speed configuration. The performance measurements at different operating points are weighted to represent real world use. WEF is measured in thousand gallons per kilowatt hour (kgal/kWh). See the DOE Test Procedure for Dedicated Purpose Pool Pumps for additional calculation details: 10 CFR 431.464(b).

J) Basic Model: Means all units of a given class of pump manufactured by one manufacturer, having the same primary energy source, and having essentially identical electrical, physical, and
173 functional (or hydraulic) characteristics that affect energy consumption, energy efficiency, water
174 consumption, or water efficiency.¹

Note: Models having a different color, rated horsepower (not total horsepower), or union fitting
type may be considered a single basic model.

1.6 Connected Products

A) **Communication Link:** As shown in Figure 1, the mechanism for bi-directional data transfers
179 between the CPPS and one or more external applications, devices or systems.

B) **Connected Pool Pump System (CPPS):** As shown in Figure 1, includes the ENERGY STAR
certified pool pump, integrated or separate communications hardware, and additional hardware
and software required to enable connected functionality.

Figure 1: Connected Pool Pump System (CPPS)

Note: Communication device(s), link(s) and/or processing that enables Open Standards-
based communication between the CPPS and external application / device / system(s).
These elements, either individually or together, could be within the pump/controller, and/or
an external communication module, a hub/gateway, or in the Internet/cloud.

C) **Consumer Authorized Third Party:** Any entity for which the consumer has provided explicit
permission to access the CPPS connected functionality, in whole or in part, via a Communication
Link.

D) **Open Standards:** Standards that are:

1. Included in the Smart Grid Interoperability Panel (SGIP) Catalog of Standards,² and/or
2. Included in the National Institute of Standards and Technology (NIST) Smart Grid Framework
 Tables 4.1 and 4.2,³ and/or

¹ DOE Test Procedure for Dedicated Purpose Pool Pumps, Final Rule, 10 CFR 431 Subpart Y, Appendix B and C.
3. Adopted by the American National Standards Institute (ANSI) or another well-established international standards organization such as the International Organization for Standardization (ISO), International Telecommunication Union (ITU), Institute of Electrical and Electronics Engineers (IEEE), or Internet Engineering Task Force (IETF).

E) Premises: Land and the improvements on it.

F) Demand Response Override-ability: The capability for a user to modify the Demand Response (DR) functionality of their DR equipped and activated product, to opt out of a scheduled and/or active DR event the product would otherwise respond to. Any system that allows event override without canceling program enrollment would meet this definition, but overrides that can be activated per event or programmed for particular times or conditions are preferred over blanket overrides that remain active until cancelled.

G) Time-Stamped Demand Response Override Notification: A message capable of being sent to a Consumer Authorized Third Party which signifies a particular instance of a Demand Response Override, and at minimum includes the time or interval of the override or a reference to the event that is being overridden.

1.7 Acronyms

A) ANSI: American National Standards Institute
B) APSP: Association of Pool and Spa Professionals
C) NSPI: National Spa and Pool Institute

2 SCOPE

2.1 Included Products

Products that meet the definition of a Self-Priming Pool Filter Pump (similar to former Inground Pump category), Non-Self-Priming Pool Filter Pump (similar to former Aboveground Pump category), Pressure Cleaner Booster Pump or Pool Pump Replacement Motor, as specified herein, are eligible for ENERGY STAR certification, with the exception of products listed in Section 2.2. Only those pool pumps that are single phase and with a Rated Hydraulic Horsepower (hhp) of >0 and <2.5 hhp can certify as ENERGY STAR under this specification.

2.2 Excluded Products

Waterfall Pumps, Integral Cartridge Filter Pumps, Integral Sand Filter Pumps, Storable Electric Spa Pumps, and Rigid Electric Spa Pumps, as defined in Section 1, are not eligible for ENERGY STAR under this specification.

Note: Some commenters requested that EPA clarify the potential savings of integral cartridge or integral sand filter pumps. Upon further consideration, in light of limited long-term opportunities for efficiency beyond DOE’s imminent standard, it is not a good fit to include these types of pumps. Thus, EPA is excluding these pumps from Version 2.0.

3 CERTIFICATION CRITERIA

3.1 Energy Efficiency Requirements

A) The Weighted Energy Factor of the pump must meet the criteria provided in Table 1, below.
Table 1: Pool Pump Weighted Energy Factor Criteria (on Curve C)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Self-Priming (Inground) Pool Pumps</td>
<td>Small (hhp < 0.711)</td>
<td>WEF ≥ -1.30 x ln (hhp) + 4.95 for hhp > 0.13</td>
<td>WEF ≥ -2.45 x ln (hhp) + 8.40 for hhp > 0.13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WEF ≥ 7.60 for hhp ≤ 0.13</td>
<td>WEF ≥ 13.40 for hhp ≤ 0.13</td>
</tr>
<tr>
<td>Self-Priming (Inground) Pool Pumps</td>
<td>Standard Size (hhp ≥ 0.711)</td>
<td>WEF ≥ -2.30 x ln (hhp) + 6.59</td>
<td>WEF ≥ -2.45 x ln (hhp) + 8.40</td>
</tr>
<tr>
<td>Non-Self-Priming (Aboveground) Pool Pumps</td>
<td>Extra Small (hhp ≤ 0.13)</td>
<td>WEF ≥ 4.92</td>
<td>WEF ≥ 4.92 (same as Version 2.0)</td>
</tr>
<tr>
<td>Non-Self-Priming (Aboveground) Pool Pumps</td>
<td>Standard Size (hhp > 0.13)</td>
<td>WEF ≥ -1.00 x ln (hhp) + 3.85</td>
<td>WEF ≥ -1.00 x ln (hhp) + 3.85 (same as Version 2.0)</td>
</tr>
<tr>
<td>Pressure Cleaner Booster Pumps</td>
<td>All</td>
<td>WEF ≥ 0.45</td>
<td>WEF ≥ 0.51</td>
</tr>
<tr>
<td>Pool Pump Replacement Motors</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
</tr>
</tbody>
</table>

B) Pump controls:
Pump controls intended for use with a Multi-speed or Variable-speed Pump shall have a default filtration speed setting of no more than one-half of the motor’s maximum rotation rate. Any high-speed override capability shall be for a temporary period not to exceed one 24-hour cycle without resetting to default settings.

C) Freeze Protection:
All dedicated-purpose pool pumps distributed in commerce with freeze protection controls must be shipped either with freeze protection disabled, or with the following default, user-adjustable settings:

- a. The default dry-bulb air temperature setting for activating freeze protection is no greater than 40 °F; and
- b. The default run time setting shall be no greater than 1 hour (before the temperature is rechecked); and
- c. The default motor speed shall not be more than half of the maximum available speed.

3.2 Significant Digits and Rounding

A) All calculations shall be carried out with directly measured (unrounded) values.

B) Unless otherwise specified, compliance with specification limits shall be evaluated using directly measured or calculated values without any benefit from rounding.

C) As specified in 10 CFR 431.464(b): WEF, EF, maximum head, vertical lift, and true priming time are rounded to the nearest tenths place. Rated Hydraulic Horsepower is reported to the nearest thousandths place. All other values are rounded to the hundredths place.
4 CONNECTED PRODUCT CRITERIA

This section presents connected criteria for ENERGY STAR certified pool pumps. Compliance with Section 4 criteria is optional. ENERGY STAR certified pool pumps that comply with all Section 4 criteria will be identified on the ENERGY STAR website as having ‘Connected’ functionality.

4.1 Communications

A) The CPPS Communication Link, in Figure 1, shall use Open Standards for all communication layers to enable functions listed in Table 2.

B) An Interface Control Document (ICD), Application Programming Interface (API), or other documentation shall be made available to interested parties that, at minimum, allows access to the functions listed in Table 2.

Table 2: Functions Applicable to the Communications Criteria

<table>
<thead>
<tr>
<th>Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section 4.2 Real-time Power Reporting</td>
</tr>
<tr>
<td>ICD/API/other doc. must include:</td>
</tr>
<tr>
<td>• Accuracy</td>
</tr>
<tr>
<td>• Units</td>
</tr>
<tr>
<td>If Energy Consumption Reporting is also provided, ICD/API/other doc. must include:</td>
</tr>
<tr>
<td>• Accuracy</td>
</tr>
<tr>
<td>• Units</td>
</tr>
<tr>
<td>• Measurement Interval</td>
</tr>
<tr>
<td>Section 4.4 Operational Status, User Settings, and Messages</td>
</tr>
<tr>
<td>Section 4.5 Demand Response</td>
</tr>
</tbody>
</table>

Notes:

1. A CPPS that enables economical and direct communications that comply with 4.1.A and 4.1.B on the consumer’s premises is preferred; but alternative approaches, where the CPPS only complies with 4.1.A and 4.1.B outside of the consumer’s premises are also acceptable.

2. A product that includes an embedded modular communications port that complies with 4.1.A and 4.1.B need not be supplied with a compatible communications module.

4.2 Real-time Power Reporting

Whenever pumping, the CPPS shall be capable of transmitting measured or estimated data representative of its real-time power draw to consumers and consumer authorized third parties via a communication link. The CPPS may optionally also transmit measured or estimated data representative of its interval energy consumption.

Note: Real-time power shall be reported in watts. If provided, EPA recommends that energy consumption data be reported in watt-hours for intervals of 15 minutes or less; however, representative data may also be reported in alternate intervals as specified in the ICD or API detailed in Section 4.1. The CPPS may also provide energy use feedback to the consumer on the product itself and use any units and format (e.g., dollars/month).
4.3 Remote Management

At minimum, the CPPS shall be capable of responding to consumer authorized signals received via a communication link requesting:

A) A start or stop to pumping, and

B) A change to motor speed and/or rate of flow.

4.4 Operational Status, User Settings & Messages

A) At minimum, the CPPS shall be capable of providing the following information to consumers and consumer authorized third parties via a communication link:

1. Operational status including:
 a. On/Off/Standby, and
 b. Motor speed and/or rate of flow

2. DR status including:
 a. Inactive
 b. Active – Type 1
 c. Active – Type 2
 d. Active – Type 3
 e. Time-stamped DR override notification

3. Program schedule including schedule times and scheduled operation

B) The CPPS shall be capable of providing at least two types of messages relevant to optimizing its energy consumption, either:

1. On the product (e.g. pool pump and/or controller), and/or

2. Transmitted to consumers and consumer authorized third parties via a communication link.

Note: For example, messages relevant to energy consumption for Pool Pumps might address a fault condition, a reminder to clean/flush the filter, or a report of energy consumption that is outside the product’s normal range.
4.5 Demand Response

At a minimum, the CPPS shall be capable of responding to Consumer Authorized Third Parties by providing the following three responses: Type 1, Type 2, and Type 3, as detailed below.

While performing the required functionality of these responses, the CPPS shall:

1. Within ten seconds of receipt of a response request on the consumer's premise, shall execute the required response.

2. Be capable of supporting DR event override-ability.

3. Prior to or during a demand response event, return to normal operation if the consumer overrides the event.

4. Either delay or reject a demand response request if responding would compromise safety or result in equipment damages as determined by the manufacturer.

A) Type 1 Response: This response is intended to curtail demand while minimizing consumer impact. This type of response may be used daily to manage demand under programs such as Time of Use and/or Real Time Pricing, or for peak shifting during peak demand days, often 20-30 times per year. The CPPS must meet the following requirements for Type 1 response:

1. The CPPS shall ship with default settings that enable a response for at least 4 hours.

2. The CPPS shall be able to provide at least one response in a rolling 12-hour period.

Table 3: Type 1 Response Requirements

<table>
<thead>
<tr>
<th>Pump Type</th>
<th>Response Subtype</th>
<th>Allowable Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single-speed Pump</td>
<td>-</td>
<td>Pump may operate in any sequence for up to 1/3 of the response period duration (e.g. up to 1-hour and 20-minutes for a 4-hour response period)</td>
</tr>
<tr>
<td>Two-speed / Multi-speed Pump</td>
<td>A</td>
<td>If operating at greater than half of its full-flow rate, the Pool Pump shall reduce flow rate to less than or equal to half of the full-flow rate or switch to off / Standby Mode.</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>If in off / Standby Mode, the Pool Pump shall remain in off / Standby Mode.</td>
</tr>
<tr>
<td>Variable-speed Pump</td>
<td>A</td>
<td>If operating at greater than 1/3 of its full-flow rate, the Pool Pump shall reduce operation to less than or equal to 1/3 of full-flow rate.</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>If operating at less than or equal to 1/3 of full-flow rate, the Pool Pump shall not increase flow.</td>
</tr>
</tbody>
</table>

B) Type 2 Response: This response is intended to immediately shutdown pumping operations. This type of response may be used daily on occasions to manage extreme peak load conditions and grid emergency conditions. The CPPS must meet the following requirements for Type 2 response:

1. The CPPS shall ship with default settings that enable a response of least 20 minutes.

2. The CPPS shall be able to provide at least three responses in a rolling 24-hour period.
C) **Type 3 Response:** This response is intended to increase demand temporarily to utilize excess/low cost electric power, such as excess solar and/or wind power. This type of response may have varying usage depending on the power generation mix of the region, and may be used daily to manage excess power, or shift demand from higher use to lower use times. The CPPS must meet the following requirements for Type 3 response:

1. Upon receipt of a requesting signal on the consumer’s premises and in accordance with consumer settings, the CPPS shall
 a. If idle, shall initiate pumping at a rate appropriate for regular filtration, and
 b. If active, shall increase the rate of flow by at least 10% of Full Flow Rate from the current flow rate, or extend pumping duration within the requested response period. The CPPS shall not increase flow to a rate outside the proper operating conditions of equipment and/or filtration systems connected to the pump, as determined by the manufacturer. For example, if manufacturer recommendations specify a maximum recommended flow rate for filtration operations, a Type 3 signal should not bring the pump above this specified maximum flow rate.

2. This response shall be limited such that the CPPS terminates pumping when:
 a. Programmed daily pumping volume is reached (*CPPS with controls capable of scheduling pumping operation based on total desired volume pumped*), or
 b. Programmed daily pumping duration is reached (*all other CPPS*).

Note: EPA has incorporated clarifying edits to the Demand Response sections, per stakeholder comments. This included the addition of intent and anticipated frequency of use items, and the consolidation of Demand Response requirements into a new top level summary section.

4.6 Information to Installers and Consumers

If additional modules, devices, services, and/or supporting infrastructure are required in order to activate the CPPS’s communications capabilities, installation instructions and a list of these requirements shall be made available at the point of purchase and prominently displayed in the product literature. It is also suggested that information be provided on the product packaging and on the product. These instructions shall provide specific information on what must be done to activate these capabilities (e.g. a product package or product label might briefly state “This product has Wi-Fi capability and requires Internet connectivity and a wireless router to enable interconnection with external devices, systems or applications.”).
5 ADDITIONAL REQUIREMENTS

5.1 Additional reporting requirements

A) The Energy Factor, Flow, and Power using Curves A, B, and C shall be reported for all products at Max Speed on each of the curves.

B) The Power Factor at each load point shall be reported for all products on Curve C, as collected in the DOE Test Procedure (10 CFR 431.464(b)).

6 TEST REQUIREMENTS

6.1 Number of Units Required for Testing

One of the following sampling plans shall be used for the purposes of testing for ENERGY STAR certification:

A) A single unit is selected, obtained, and tested. The measured performance of this unit and of each subsequent unit manufactured must be equal to or better than the ENERGY STAR specification requirements. Results of the tested unit may be used to certify additional model variations within a basic model as long as the definition of basic model is met (Section 1.5 J); or

B) Units are selected for testing and results calculated according to the sampling requirements defined in 10 CFR Part 429, Subpart B § 429.59. At least two are tested, meeting DOE sampling plan minimum requirements in 10 CFR §429.11. Results of the tested model may be used to certify additional model variations within a basic model as long as the definition of basic model is met (Section 1.5 J).

Note: EPA has updated the sampling requirements to reflect that the DOE DPPP Test Procedure is able to evaluate a single unit if needed. EPA notes that DOE compliance according to 10 CFR §429.59 does require a minimum of 2 units, and provides additional tolerances to reported values. Therefore, a DOE sampling plan option according to 10 CFR 429.59 is also allowed for ENERGY STAR certification. EPA also streamlined this section, in accordance with standard practice for federally regulated products, eliminating the terminology of “product family”.

6.2 Test Methods

When testing Pool Pumps, the following test methods shall be used to determine ENERGY STAR certification.
Table 4: Test Method for ENERGY STAR Certification

<table>
<thead>
<tr>
<th>ENERGY STAR Requirement</th>
<th>Test Method Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weighted Energy Factor (kgal/kWh); Power Factor; Freeze Protection; Curve A/B/C Flow and Power</td>
<td>DOE Test Procedure for Dedicated Purpose Pool Pumps, (See 10 CFR 431.464(b))</td>
</tr>
<tr>
<td>Standby Mode Testing</td>
<td>Section 6.3 of ENERGY STAR Pool Pumps Test Method (Rev. Jan-2013)</td>
</tr>
<tr>
<td>Demand Response</td>
<td>ENERGY STAR Pool Pumps Test Method to Validate Demand Response (Rev. TBD-2018)</td>
</tr>
</tbody>
</table>

Note: EPA notes that an update of the ENERGY STAR Pool Pumps Test Method to Validate Demand Response is underway. It is possible that it may be included in the Version 2 Pool Pumps Specification prior to the Version 2 effective date.

6.3 Compliance with Connected Criteria

Aside from demand response functionality, compliance with connected criteria, as specified in Section 4, shall be through examination of product and/or product documentation.

7 EFFECTIVE DATE

The ENERGY STAR Pool Pump specification shall take effect on January 1, 2019. To certify for ENERGY STAR, a product model shall meet the ENERGY STAR specification in effect on the model's date of manufacture. The date of manufacture is specific to each unit and is the date on which a unit is considered to be completely assembled.

Note: EPA anticipates finalizing the Version 2.0 specification by March 30, 2018, with an effective date January 1, 2019. Version 3 will have an effective date of July 19, 2021 which will coincide with the effective date of the DOE Dedicated Purpose Pool Pump Regulation. Note that when finalized, Version 2 and Version 3 will be released as separate documents.

8 FUTURE SPECIFICATION REVISIONS

EPA reserves the right to change the specification should technological and/or market changes affect its usefulness to consumers, industry, or the environment. In keeping with current policy, revisions to the specification are arrived at through industry discussions. In the event of a specification revision, please note that the ENERGY STAR certification is not automatically granted for the life of a product model.
9 REFERENCES

4) ANSI/UL 1081-2016. Standard for Swimming Pool Pumps, Filters, and Chlorinators
5) ANSI/NSF 50-2016a. Equipment for Swimming Pools, Spas, Hot Tubs, and Other Recreational Water Facilities
This Appendix is informational only. In Section 4.4 Operational Status, User Settings & Messages, a useful framework for demand response state messaging, can be extracted from CTA/CEA 2045 Op States:

Table 5: CTA Op State Codes (Table 8.2.4)^4

<table>
<thead>
<tr>
<th>Op State Code</th>
<th>Name</th>
<th>Section 4.4 Corresponding Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Idle Normal</td>
<td>Off/Standby</td>
<td>Indicates that no demand response event is in effect and the CPPD has no/insignificant energy consumption.</td>
</tr>
<tr>
<td>1</td>
<td>Running Normal</td>
<td>On</td>
<td>Indicates that no demand response event is in effect and the CPPD has significant energy consumption.</td>
</tr>
<tr>
<td>2</td>
<td>Running Curtained</td>
<td>Active Type 1 or Active Type 2; Pump Running</td>
<td>Indicates that a curtailment type demand response event is in effect and the CPPD has significant energy consumption.</td>
</tr>
<tr>
<td>3</td>
<td>Running Heightened</td>
<td>Active Type 3; Pump Running</td>
<td>Indicates that a heightened-operation type of demand response event is in effect and the CPPD has significant energy consumption.</td>
</tr>
<tr>
<td>4</td>
<td>Idle Curtained</td>
<td>Active Type 1 or Active Type 2; Pump Not Running</td>
<td>Indicates that a curtailment type demand response event is in effect and the CPPD has no/insignificant energy consumption.</td>
</tr>
<tr>
<td>5</td>
<td>CPPD Error Condition</td>
<td>Messages (4.4 B)</td>
<td>Indicates that the CPPD is not operating because it needs maintenance support or is in some way disabled (i.e. no response to the grid).</td>
</tr>
<tr>
<td>6</td>
<td>Idle Heightened</td>
<td>Active Type 3; Pump Not Running</td>
<td>Indicates that a heightened-operation type of demand response event is in effect and the CPPD has no/insignificant energy consumption.</td>
</tr>
<tr>
<td>9</td>
<td>Variable Following</td>
<td>(No Entry)</td>
<td>Indicates that a variable-setting type of demand response event is in effect and the CPPD is presently following the specified setting.</td>
</tr>
<tr>
<td>10</td>
<td>Variable Not Following</td>
<td>(No Entry)</td>
<td>Indicates that a variable-setting type demand response event is in effect and the CPPD is presently not following the specified setting (e.g. has no/insignificant energy consumption.</td>
</tr>
<tr>
<td>11</td>
<td>Idle, Opted Out</td>
<td>Timestamped DR Over-ride Notification; Off/Standby</td>
<td>Indicates that the CPPD is presently opted out of any demand response events and the CPPD has no/insignificant energy consumption.</td>
</tr>
<tr>
<td>12</td>
<td>Running, Opted Out</td>
<td>Timestamped DR Over-ride Notification; On</td>
<td>Indicates that the CPPD is presently opted out of any demand response events and the CPPD has significant energy consumption.</td>
</tr>
<tr>
<td>13:125</td>
<td>Not Used</td>
<td>(No Entry)</td>
<td>Future use</td>
</tr>
<tr>
<td>126:255</td>
<td>Reserved</td>
<td>(No Entry)</td>
<td>Reserved for manufacturer use.</td>
</tr>
</tbody>
</table>

Opt Out Messaging Example, CTA 2045:

When a user places their CTA 2045 connected device into an opt-out state, the Customer Override message (Bytecode 0X11, Value 1 (Override)) is sent when the customer changes the products override state to Opt-out.

If a load reduction message is sent to this device, the device will acknowledge receipt of the message, [Future use]

^4 Cycling On/Off (code 7/8) omitted, since not relevant to pool pumps. Smart Grid Device (SGD) changed to CPPD for clarity.
and re-send this Customer Override message while an Opt-out state is in effect.

When a device is in an Opt-out state, and receives an Operational State Query (0x12), the device will respond with the State Query Response (0x13, Message: Op Code from Table 5 (CTA 8.2.4)). For example, if the product is opted out and running, the response would be (0x13 Message: 12).

Opt Out Messaging Example, Open ADR 2.0:

Open ADR 2.0 stores long term DR enrollment in EiAvail and short term Opt-out in EiOpt messages. The EiOpt message would contain the ID.

In Open ADR 2.0, this requirement would translate to the need of the CPPS to be able to create short term EiOpt events if needed by the user, to override long term (EiAvail) DR enrollment status.