Active/Idle Mode and Enabling Power Management

Steve Ortmann
Hewlett Packard
February 15, 2006
Core Issues

- Industry believes that enabling power management will yield the most significant energy savings to the user.

- Data gathered by manufacturers indicates very few units (significantly less than 25%) comply with proposed limits.

- Performance classification of Basic/High performance is flawed.
 - Incomplete configuration information provided
 - Classification based on frequency of processor

- Significant risk for industry to accept proposed Idle limits when it cannot predict the power needs of new technologies and customer requirements.

- We require a measurement process which is dynamic and accounts for the highly configurable nature of these products.
 - Potentially a process which “normalizes” the products.
 - Minimizes the burden of testing numerous configurations.
Power Management pilot at Dell call center shows easy implementation and minimal cost

- 10/07/2005 Energy Star EZ-GPO software and system policy successfully deployed to ~600 client systems at call center.
- Computational Inputs
 - 16 work hours per day (operations 2 shifts per day)
 - 7 work days per week
- Power Management Settings
 - Suspend monitor – 10 minutes
 - Suspend system – 15 minutes
- Issues
 - No issues reported to Help Desk.
 - Onsite I/T support staff have received 5 user complaints. They are currently investigating. Issues may be addressed through user education.
 - There have been no production outages as a result of applying power management settings.

- Conclusion: Minimal cost/risk to implement Power Management.
Customers tell us they are enabling PM at a much higher rate than previously reported.

- 300 business and institutions surveyed.
- Mix of small, medium & large customers.
- Users of Dell, HP, IBM systems

Question:
- **Who currently enables Power Management?**
 - 33% are 100% enabled
 - 15% additional are between 76% to 99% enabled.
 - 13% additional are between 51% to 75% enabled.
 - 16% additional are between 26% to 50% enabled.
 - 11% additional are between 1% to 25% enabled.
 - Only 13% are not PM enabled.

- Conservative estimate for this survey is that 56% or greater are enabling PM today.
When customers use power management (56% are today), additional energy savings for adding a more efficient power supply is minimal.

In the Dell pilot, customers would save only $1.05/year more. The cost of adding a new more efficient supply is 10-15 times the annual savings.
Enabling Power Management saves 70% more kWh than 80% efficient power supply.

• The bottom line is, in our latest corporate platforms using the Dell pilot usage model, there is a savings of 96KWHr per day between the EPA proposal and the Dell pilot for the same population (of systems), and over 346KWHr from our base line.

• In this pilot, implementing PM was minimal cost and saves 70% more than an 80% efficient power supply system. Payback is immediate and only requires conviction to enable it.

• 80% efficient power supplies will cost a customer $10-15 additional per unit for a mainstream class desktop system in 2007 - 2008. They are not available today in quality or quantity for mass production.
Energy Efficiency Metric

• ITI supports the development of an energy efficiency metric. Preferably developed and supported by a joint and open effort between industry and other concerned entities.

• In Nov 2005, several members of ITI initiated development of an energy efficiency metric in ECMA International, an international standards body.

• More information on ECMA International:
 – http://www.ecma-international.org/
Status of ECMA Work

• Which committee is developing the metric?
 – ECMA TC38, Product-related Environmental Attributes.

• What are the expected deliverables?
 – To survey national and international standards, specifications and recommendations;
 – To survey energy efficiency drivers (regulatory, NGO, industry, eco label etc);
 – To determine a definition of "energy efficiency";
 – To determine how to measure energy efficiency;
 – To liaise with organizations dealing with energy efficiency.
 – Factors under consideration include; system power rating, system power consumption, user experience
Status of ECMA Work

• What is the anticipated scope?
 – Desktop and notebook computers

• What is the status?
 – An informal team has developed the work item proposal and key deliverables. A formal Energy Efficiency Task Group is now being formed within ECMA TC38 to execute the work item proposal and develop the metric.

• What is the timeline?
 – Will be determined by the ECMA TC38 Energy Efficiency Task Group.