ENERGY STAR®
for Data Centers

Alexandra Sullivan
US EPA, ENERGY STAR

February 4, 2010
Agenda

- ENERGY STAR
 - Buildings Overview
 - Energy Performance Ratings
 - Portfolio Manager

- Data Center Initiative
 - Objective
 - Development Process
 - Analytical Findings
 - Model Recommendations

- Model Release Schedule
ENERGY STAR for Buildings
Overview

- Energy management program that provides proven solutions to help building owners and managers reduce their energy consumption
 - Help businesses protect the environment through superior energy efficiency
- Numerous technical and managerial resources
 - National rating system for buildings to benchmark and track energy use
 - Energy management guidelines
 - Advice on design for energy efficient buildings
 - Online case studies and best practice stories
 - Calculators to track returns on energy efficiency investments
 - Training opportunities
- Opportunities for national recognition
ENERGY STAR for Buildings Overview

- Work in markets with a focus on:
 - Commercial Property (offices, retail, hotels)
 - Public Sector (government, education)
 - Healthcare
 - Small businesses and congregations

- Provide an online tool to rate energy performance on a scale of 1-to-100
 - Over 80,000 buildings have rated

- Buildings that earn a 75 or higher can earn the prestigious ENERGY STAR label
 - Over 8,000 buildings have earned the ENERGY STAR

- Learn more: www.energystar.gov/buildings
Is Your Building Performing Well?

Fuel Efficiency

MPG

Energy Performance

EPA Benchmarking
EPA Rating Objectives

- Help businesses protect the environment through superior energy efficiency
- Motivate organizations to develop a strategic approach to energy management
- Convey information about energy performance in a simple metric that can be understood by all levels of the organization
EPA Rating
Requirements

- Monitor actual as-billed energy data
- Create a whole building indicator
 - Capture the interactions of building systems not individual equipment efficiency
 - Track energy use accounting for weather and operational changes over time
- Provide a peer group comparison
 - Compare a building’s energy performance to its national peer group
 - Track how changes at a building level alter the building’s standing relative to its peer group
EPA Rating
Technical Foundation

- Analyze national survey data
 - Commercial Building Energy Consumption Survey (CBECS)
- Develop regression models to predict energy use for specific space types based on physical and operational characteristics
- Create scoring lookup table
 - Ratings are based on the distribution of energy performance across commercial buildings
 - One point on the ENERGY STAR scale represents one percentile of buildings
- Buildings that perform in the 75th percentile or better can earn the ENERGY STAR label
EPA Rating
Technical Foundation

- Developing the regression model
 - Account for building operations
 - Employees, Hours, HDD, CDD, etc
 - Apply a linear regression model
 - Energy = $C + C_1 \cdot \text{Sqft} + C_2 \cdot \text{Workers} + C_3 \cdot \text{Number of computers} + C_4 \cdot \text{HDD} + C_5 \cdot \text{CDD} + \ldots$
 - Coefficients represent average responses
 - Coefficients provide adjustments for the operational characteristic
 - *Does not* add the kWh of each piece of equipment
 - *Does* adjust energy based on correlation between operating characteristic and energy use (i.e. the coefficient on PCs approximates a “work station”)
EPA Rating
Technical Foundation

- The rating *does*
 - Evaluate as-billed energy use relative to building operations
 - Normalize for operational characteristics
 - Size, Number of employees, Weekly operating hours, Climate
 - Depend on a statistically representative sample of the US commercial building population

- The rating *does not*
 - Attempt to sum the energy use of each piece of equipment
 - Normalize for technology choices or market conditions
 - Type of lighting, energy price
 - Explain why a building operates as it does
EPA Rating
Building Types

- Hospital
- Retail
- Office
- Hotel
- Medical Office
- Wastewater Treatment Plant
- Courthouse
- Bank/Financial
- Warehouse
- Dormitory
- Supermarket
- K12 School
Portfolio Manager

- Free on-line benchmarking tool
 - Secure environment
- Available for any building
- Track energy use
 - Site EUI
 - Source EUI
 - Energy performance ratings (for selected spaces)
 - Weather normalized source EUI
 - National average comparisons
- Track energy costs
- Track greenhouse gas (GHG) emissions
- Track water consumption
- Apply for ENERGY STAR recognition (for selected spaces)
- Learn more: www.energystar.gov/benchmark
Data Center Initiative
Data Center Initiative

Objective

- Develop a useful rating for industry
 - Can be available for use as soon as possible
 - Based on items that are commonly measured and tracked
- Build on existing ENERGY STAR methods and platforms
- Apply to stand-alone data centers and data centers housed within office or other buildings
- Assess performance at the building level to explain how a building performs, not why it performs a certain way
- Provide users with information and links to additional resources to aid in their efforts to determine next steps
- Offer the ENERGY STAR label to data centers with a rating of 75 or higher (performance in the top quartile)
Data Center Initiative

Objective

- Develop regression model to predict PUE
 - Include factors that are outside of the control of the owner/operator
 - Factors for adjustment determined based on data collection and analysis

- Compare actual PUE to predicted PUE
 - More efficient data centers will have lower PUE than is predicted

- Express data center efficiency as a 1-to-100 ENERGY STAR rating
 - Each point on rating scale equals 1 percentile of data centers

- In Portfolio Manager
 - **ANY** data center can earn a rating
 - Enclosed or free standing
 - Good performer or poor performer
 - Data centers with ratings of 75 or higher can apply for the ENERGY STAR
Data Center Initiative
Development Process

- October 2007 – March 2008
 - Consultations with industry stakeholders
- March 2008 – June 2009
 - Data collection, Updates to industry
- June – September 2009
 - Analysis & Preliminary Rating Development
- September 29, 2009
 - Preliminary model results presented to industry (Recording available)
- October – November 2009
 - Analysis of industry feedback & Final Rating Development
- Spring 2010
 - Data center model scheduled for release
Data Center Initiative
Analytical Findings

- Data collection requested both UPS and PDU data for IT energy, if available
- UPS more common than PDU
 - 108 Data Centers with data from the UPS meter
 - 42 Data Centers with data from the PDU meter
 - Above totals include 29 that provided both UPS and PDU data
- Not enough PDU data to develop a rating
- Using UPS data provides more data centers with the ability to rate performance

➔ EPA rating will be based on UPS readings as the proxy measurement for IT energy
Data Center Initiative
Analytical Findings

- Evaluate data center energy consumption:

 Power Usage Effectiveness (PUE) = Total Energy / UPS Energy

- PUE is based on energy, not power
 - Total Energy includes all fuels (electricity, natural gas, diesel, etc.)

- PUE is based on source energy, not site energy
 - Source Energy is the total amount of raw fuel required to operate the building
 - Results in equitable comparisons for buildings with different fuel types utilized
 - For a 100% electric building, the use of source energy will not change PUE
Distribution of PUE Ratios

Average PUE = 1.91
PUE Range: 1.25 to 3.75
Data Center Initiative
Analytical Findings

- Some surprising results for operating characteristics to be included/excluded, but these are supported by data
- PUE is fairly independent of operating characteristics, as compared with similar models for commercial buildings
- Few operating characteristics expected to be included in a final model
- Relatively low R-squared expected, but still acceptable

Conclusions:
- Variability in energy use is more dependent on energy management practices than operating characteristics
- Despite the low R-squared, regression modeling results in meaningful adjustments for some operating characteristics
Sample Data Center shows little variability in monthly energy consumption

- Annual HDD = 4121, annual CDD = 1623

No peak in energy use for hottest months
Data Centers in 10 coldest climates show no variability in monthly energy consumption

10 buildings with annual HDD > 5976
Monthly Energy Consumption
10 Warmest Climates

- Data Centers in 10 warmest climates show no variability in monthly energy consumption
- 12 buildings with annual CDD > 2400
Data Center Initiative
Analytical Findings - Climate

- Analysis does not show a statistically significant relationship between climate and energy consumption
 - Some stakeholder participants agreed that energy consumption is dominated by internal loads, as opposed to climate
 - Others provided theoretical reasons why climate should influence load
 - EPA does not dispute the fact that climate can have an impact on energy consumption
 - This impact is not significant enough to show up in the regression analyses that form the basis of EPA models
 - Variability in PUE as related to climate is less significant than variability caused by other factors (IT Energy, management, etc)
 - EPA ratings must reflect observed relationships

- Climate variables will not be included in the final model
Data Center Initiative
Analytical Findings – UPS Energy

- PUE is lower in buildings with higher total UPS Energy
 - Consistently significant in regressions
 - Likely due to economies of scale
- UPS Energy will be included in the final model
Data Center Initiative
Analytical Findings – Tier Level

- Tier level did not show strong, statistically significant correlations with energy consumption
- Industry feedback indicated that Tier level should not be included in a model
 - Facilities can have multiple Tiers within one data center
 - Facilities may have unnecessarily high Tier levels thinking greater redundancy is better, even if it is not required for all components in the data center
 - Normalizing for Tier level provides a disincentive for efficient design
 - Based on industry feedback, Tier will not be included in the final model
- Tier level will not be included in the final model
Data Center Initiative
Analytical Findings – Type

- Data collection included seven types of datacenters
 - Traditional Enterprise; On-Demand Enterprise; Telecom; High Performance Computing Center (Scientific); Hosting; Internet; 7 Hybrid
 - Majority of respondents were traditional enterprise and hosting facilities
 - No statistically significant correlations were observed between a particular type and energy consumption
- Industry stakeholders recommended that Type was not a good variable for inclusion in the ENERGY STAR model
 - Many different categories of data center and even multiple categories within certain centers
 - Operators agreed that the data (average PUE values, regression results) does not support the inclusion of data center type in a model
- Type will not be included in the final model
Model Selection Process

- Multiple factors to evaluate
 - Regression model statistics (F, p, R²)
 - Individual variable statistics (t-stats)
 - Distribution of ratings
 - By 10% bin
 - Average rating
 - Number and percent above 75
 - By Data Center Type
 - Residual and rating plots
 - Physical understanding of results
 - Do variables make sense?
 - Industry feedback
 - Magnitude of impacts
 - How much does each variable affect the model?

- Best model must show a good balance using all criteria
Model Recommendation

- Data: 61 Stand Alone Data Centers collected by EPA
- Dependent Variable: PUE
- Independent Variable: UPS Energy

Overall Model Statistics
- R-squared values are low (0.10) for a PUE model because UPS Energy explains a large percentage of Total Energy
- R-squared values for a Total Energy model would be > 0.90
- F-statistic: 7.56
- P-level: 0.0079

Individual Variable Statistics
- The adjustment for UPS Energy is significant with 99% confidence
- T-statistic is 2.75
Model Performance

- Model produces appropriate ratings
 - Average Rating: 49
 - Percent Rating > 75: 23%
- Model produces a uniform distribution
 - Approximately 10% of the population falls within each 10 point rating bin
- Residual plots exhibit random scatter
 - Buildings with particular operating parameters do not have systematically higher (or lower) ratings
 - Buildings in different climates do not have systematically higher (or lower) ratings
- Strong model
 - Based on these results, the model appears robust
Rating vs. PUE
Rating vs. UPS Energy

![Graph showing the relationship between Energy Performance Rating and UPS Energy (kBtu)].
Rating vs. HDD

Energy Performance Rating vs. Heating Degree Days
Rating vs. Tier
Economizer Rating Example

- Two example buildings
 - Same UPS Energy, Size, Climate
 - Same Predicted PUE
 - Facility with economizer has lower Total Energy and Actual PUE
 - Different ratings

<table>
<thead>
<tr>
<th></th>
<th>No Economizer</th>
<th>With Economizer</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPS Energy (MBtu)</td>
<td>220,000</td>
<td>220,000</td>
</tr>
<tr>
<td>Total Energy (MBtu)</td>
<td>380,000</td>
<td>360,000</td>
</tr>
<tr>
<td>Predicted PUE</td>
<td>1.87</td>
<td>1.87</td>
</tr>
<tr>
<td>Actual PUE</td>
<td>1.73</td>
<td>1.64</td>
</tr>
<tr>
<td>Rating</td>
<td>60</td>
<td>70</td>
</tr>
</tbody>
</table>
Model Release and Next Steps

- Model will be released in Portfolio Manager in **June 2010**
- Next Steps
 - Start measuring energy consumption at the UPS output
 - Learn about Portfolio Manager and create an account
 - www.energystar.gov/benchmark
 - Take training on ENERGY STAR benchmarking with Portfolio Manager
 - www.energystar.gov/businesstraining
 - Prepare to start using Portfolio Manager in June!
Questions and Discussion

sullivan.alexandra@epa.gov

ENERGYSTARdatacenters@icfi.com